
Serverless
Development
Architecture to
Handle Streaming
Event on
Microsoft Azure
Cloud Platform

Whitepaper

Key Takeaways

01
Realtime Metric Collection

02
Cloud-Based Event Streaming

04
Seamless Network Integration

03
Streamlined Resource
Management

05
Public Cloud Kafka Services

06
Private Link Kafka

07
Unified Sign-On

09
Enhanced Security and
Compliance

08
Topic Specific Metrics

01

Abstract
Traditionally most of the organization try to handle streaming live data with
different datatypes and high volume. Analyse Ingested data for valuable
insights that are not available through traditional data storage and analysis.
Confluent Kafka on Azure emanates finest technology for in stream processing
platform and fault tolerant messaging system to roar. Primary goal is to
provide confluent Kafka on Azure as well as to deploy and manage Kafka
clusters more easily with a fully managed and secure service.

The key areas covered in this whitepaper as follows.

Introduction

02

Every company uses heterogeneous data sources that are in different data
formats. So, when we plan data integration, we combine data from these
different sources into an integrated and unified repository. However, due to
their enormous interdependence and complex connectivity, these different
integrations can pose a real and unique challenge for us.

Confluent Kafka as a service business model. The customer runs applications in
multiple data centres in Europe, Asia, and the United States. Applications want
lower latency and higher throughput when interacting with Kafka clusters. To
achieve high availability and low latency, set up a separate cluster in each
location and use Confluent Replicator technology to keep clusters
synchronised for selected topics for each application. Applications can connect
to a closer cluster to achieve low latency. In the event of a disaster,
administrators can switch the application to the other cluster.

Confluent Kafka with Azure not only promises to help us decouple these
differentiated data streams and systems, but it also allows us the connectivity
we need with the Microsoft cloud, pleasantly solving this complex conundrum..

Trends
There are many business sectors using event streaming with Confluent Kafka in
the automotive, banking, manufacturing, and logistics industries. Logistics
ecosystems are expected to prioritize operational efficiency and significant
impact on the movement of goods. Infrastructure and deployment will vary by
use case. Confluent Kafka can effectively process analytical and transactional
data in motion. The following are trends in event data.

Challenges
Data Integration: Integrating event streaming into an existing infrastructure
can be complex. To ensure that data from multiple sources, such as databases,
microservices, and external systems can be efficiently ingested into event
streaming platform.

Data Loss Prevention: Guaranteeing data integrity and preventing data loss is
crucial - Azure Kafka's replication and fault tolerance features ensure data
durability and resilience against failures.

Data Decoupling: Many applications suffer from tight coupling with data
producers and consumers. Azure Kafka decouples these components reducing
dependencies and allowing for more modular and flexible systems.

• Cloud native

• Data sharing in real time

• Advanced data governance and policies

03

Solutions and Benefits
Data motion is a new paradigm of data infrastructure. We have many events
processing engine is in the market like Rabbit MQ, Logstash, Boomi, Cloudera,
IBM MQ, Amazon Kinesis, Snowflake, Apache Kafka, Apache stream, and so on.

We provided a solution for Confluent Kafka on Azure because it is a truly
cloud-native service and a complete stack for leveraging data in motion that
goes far beyond Apache Kafka.

Confluent Kafka on Azure is designed to enable new data infrastructures. It is a
fully managed cloud service running on Azure cloud. The Confluent platform
can be deployed as self-managed software on premise or in the cloud
(private/public) and can be deployed on Kubernetes.

Confluent Kafka on Azure provides encryption, authentication, and
authorization mechanisms to safeguard sensitive data.

Logistics companies have many global applications to process shipment data
and the applications run in multiple data centres. The applications want lower
latency and higher throughput when interacting with Kafka. We have provided
an automation framework to set up a dedicated cluster and use replicator
technology to keep clusters in sync for selected topics for each application.

SaaS has a special offering for users.

• Pay-per-use pricing model.

 � Subscription-based cost component

 � Usage-based cost component

• Capacity management

• No downtime for upgrades

Data Security: Securing data in transit and at rest is paramount.

Data Serialization: Managing data serialization formats like Avro, JSON, and
handling schema evolution can be challenging. As your data schemas evolve
over time, you need to ensure backward and forward. Compatibility to avoid
breaking existing consumers.

Message Order: It can be difficult to maintain the order of messages within a
stream, especially in a distributed environment. It is not always possible to
guarantee a strict order for all events.

Duplication of Events: Events can be duplicated due to network problems,
retries, or system failures. Implementing mechanisms to detect and deduplicate
events is critical to ensuring data consistency.

!"#$%&'#
()*)+&"*%&

,"*&%"&*

(-.
/,01#2

3.#
453

(67#
38%&9)::

.&;'&"*)*8
<"#38%&9)::

3=::>#6)");&?#@:=A*&%

@<"B:=&"*#C)BD)#
@:=A*&%

.+E&')#
1&;8A*%>

C.FG
CAH:@G,

5I=%&#A<=%+&#A8"D#
98*E#J%8K)*&#,J

C)BD)#
+:8&"*L@<""&+*

-.M

1MNC53C5N5JJN0-ONG!@NPPQ

@:)AA8B8&?#
.=R"&*#
STSTSTSLSS

5I=%&#
.&"*8"&:

G<;#5"):>*8+A#
4<%DA$)+&

5I=%+*8K&#
(8%&+*<%>

5I=%&
J<:8+>

C&>#
K)=:*

1U5@

O-0/#$&&%8";

,"*&%"&*

5I=%&#U)+DR<"&

.=RA+%8$*8<"#
,(V(-.#-)'&

J%8K)*&#G8"D#
0"?$<8"*

5I=%&#J%8K)*&#G8"D

@<"B:=&"*#C)BD)

04

System Architecture
This app modernization solution has been designed and built following
Microsoft best practice guidelines and Microsoft Azure well-architected
framework standards. The main goal of this service is to provide Kafka services
in the public cloud – simplifying the deployment and management of Kafka
clusters with a fully managed and secure Kafka service. Availability zones are a
high availability offering from Microsoft that protects applications and data
from data centre outages. Zones are unique physical locations within an Azure
region. Each zone consists of one or more data centres equipped with
independent power, cooling, and networking. To ensure resiliency, there is
always more than one zone in all zoned regions. By physically separating the
availability zones within a region, applications and data are protected from data
centre failures. CKC clusters can be deployed in multiple availability zones.

Confluent Kafka on Azure clusters in production would only be accessible
through the customer's Azure network. If an on-site server needs to access the
Confluent clusters, additional network routing and firewall configuration may be
required. Confluent cloud via the Confluent portal, the DNS name is provided by
Confluent and should be added via the Azure portal subscription.

The following ports are required.

 kafka - 9092

 HTTPS endpoints – SR

 KSQL – 443

Figure 1: System Architecture

05

Type Application Resource

TOPIC

Consumer Group

Transactional ID

TOPIC

Consumer Group

Transactional ID

Tech01

Tech01

Tech01

Tech02

Tech02

Tech02

Tech01-TOPIC1
Tech01-TOPIC2

Tech01-Consumer-Group-01
Tech01-Consumer-Group-02
Tech01-Consumer-Group-03

Tech01-Transaction-ID1
Tech01-Transaction-ID2

Tech02-Topic

Tech02-Consumer-Group-01

Tech02-Transaction-ID1

Description of the Architecture
Schema registry: Schema registry is linked to the environment. All clusters in
the same environments use the same schema registry. Note that the schema
registry is a regional resource. so, if the customer chooses a region for a
particular schema registration, all clusters. at all sites in the same environment
use the region-based schema registration. Latency should not be an issue in
most use cases.

Clusters: Each cluster is a logical Apache Kafka cluster. The clusters have their
own topics. Each cluster can have 0 or more ksqlDB clusters. Each cluster can
have 0 or more connectors. Cluster is a geolocated resource.

ksqlDB: ksqlDB runs SQL-like queries on the stream of events to extract data.

Connector: The connector integrates with upstream applications (source
connector) and downstream applications (sink connector). The source
connector transfers data from external systems into Kafka and the sink
connector transfers data from Kafka to external systems.

Message: A message is an application data unit. Each message may contain
headers, metadata, and user data in arbitrary bytes. Messages can be encoded
and compressed in various formats. compressed by using different compression
codecs.

Partition: Partition is a logical FIFO queue for messages. Each partition can
contain a number of messages.

Topic: The topic is the logical stream of events. Each topic can have one or
more partitions.

Application Integration
In a shared cluster, each application should have its own private prefix. The
prefix is identified by the application prefix. For example, Tech01 may have a
namespace with the prefix “Tech01-”. Similarly, consumer group names and
transaction names ID used by Tech01 have the same prefix.

An example table illustrating the access matrix by namespace (prefix) is as follows:

06

The above configuration can be easily managed by granting ACL for service
accounts with prefixes. Granting can be done at the application deployment
stage in the self-service portal after proper approval. After successful
onboarding, each application engineer/devOps will receive a common set of
configuration parameters for each environment as listed below:

With these parameters, clients can produce into and consume from the shared
Kafka cluster. Typically, it is not necessary for an application engineer to
connect to the Confluent cloud console to perform application integration.

In certain circumstances, an application (Tech03) may need to access a topic
that is not in scope (without a prefix of "APP03-"). When APP03 attempts to
access the topic's data using the Tech03 credentials, the application receives an
error message indicating that authorization failed. In this case, a specific ACL
may be granted on an ad hoc basis. The ACL is managed by the end-user
administrator in their own dedicated cluster.

If the customer wishes to deploy Kafka clusters dedicated to specific
applications only, they can deploy such clusters in the appropriate environment
and assign cluster administrators to the application owner. API keys
management and connection parameters query can be done directly by the
cluster administrators.

Configuration
Parameter

Java Config Key Comments

Bootstrap Server

Kafka Access Key

Kafka Access Key
Secret

Schema Registry
URL

Schema Registry
Access Key

Schema Registry
Access Key Secret

Topic Management

Transactional ID

Consumer Group ID

bootstrap. Servers

Username

Password

schema.registry.url

basic.auth.user.info

basic.auth.user.info

-

transactional.id

group.id

Endpoint for Kafka cluster

Authentication credential (key)

Authentication credential (secret)

Endpoint to the schema registry

HTTPS basic authentication
credential to schema registry

HTTPS basic authentication
credential to schema registry

Topics to be created, updated,
deleted in self-service portal.
Topic configuration might be
changed in the self-service portal or
by admin upon request.

Self-decided with the specified prefix

Self-decided with the specified prefix

07

Single Sign on (SSO) via Azure to
Confluent Cloud
Confluent Kafka on Azure allows for single sign-on (SSO) using an existing
SAML-based identity provider. With SSO, enterprise users can log in to multiple,
unrelated systems using a single user ID and password, which means
enterprises no longer must store and manage passwords in Confluent Kafka on
Azure platform. SSO also improves security and decreases service and
troubleshooting issues associated with individual logins.

SSO can only be configured by organization admins. SSO configuration is a
onetime task and requires configuring both Confluent Kafka on Azure settings
and Idp (e.g., Azure active directory application) for federation settings.

When an employee joins or leaves the company, credentials are immediately
provisioned or revoked according to AD user management. However, role
access management is still required to enable the user to perform all
necessary administrative tasks in the Confluent Kafka on Azure

Figure 2: Confluent Kafka on Azure SSO Flow

Figure 3: Management of Topics

RBAC access Matrix
Enforce granular controls over application access and management of topics
and consumer groups with Kafka ACLS

08

From the above picture, service account ID 1522 does not have read access for
topic_2 and can access only topic_1. RBAC roles, will be able to provide
granular access to specific topics with Confluent cloud RBAC.

Audit Event Management
Audit logs to detect abnormal behaviour and meet compliance such as capturing
logs in dedicated topics and offload to external systems. Audit logs can be viewed
through the Kafka-console-consumer or via imported to the running Kafka cluster
and then exported to external systems. The audit events are JSON documents
that can be parsed, understood, and monitored with the SPLUNK.

There are some types of events that may be relevant for audit logging to monitor.

Successful authentication to a Kafka cluster with an API key. The user:abc123 is
managed with an API key, which could be a service account, or global access key.

Monitoring and Alert using Splunk
Confluent Kafka offers monitoring metrics and can configure threshold for
alerting for different metrics.

Metrics Comments

io.Confluent.kafka.server/received_bytes

io.Confluent.kafka.server/sent_bytes

io.Confluent.kafka.server/retained_bytes

io.Confluent.kafka.server/partition_count

io.Confluent.kafka.ksql/streaming_unit_count

io.Confluent.kafka.schema_registry/schema_
count

To monitor topic level ingress

To monitor topic level egress

To monitor topic level storage.

To monitor Partition count by cluster

To monitor Streaming unit count

To monitor Number of schemas
registered

Conclusion
There are many challenges when using streaming data, especially when
handling offsets. If an error occurs in the middle of the process, the data is lost.
The offset must be explicitly maintained in our code or a separate table.

But now Confluent Kafka provides all the facilities, and the retention period is
maintained for the theme so that data loss can be avoided.

Confluent Kafka offers multiple methods of data recovery, and the
infrastructure is maintained by both the cloud provider and the Confluent cloud
team and is therefore considered a highly available and replicated system.

09

About The Authors

Guru Prasad C P
Group Practice Head, Microsoft Business Unit, Tech Mahindra

Guru Prasad C P has an experience of over 24 years with more than 8 years
specifically in the public cloud working in Asia, ANZ, Europe, and the US. His
experience includes, setting up practice teams aligned to industry verticals and
horizontals, analyst interactions for positioning the offerings, hiring the right talent,
involving in strategic exercise mergers and acquisitions, organization building,
creating frameworks, and IP’s.

At Tech Mahindra he is responsible for practice and competency development
which includes alignment with OEMs for solutions, offerings and adoption of new
technologies, customer interfacing where he acts as a trusted advisor in providing
unbiased views/opinions and aligning with organization goals at the same time,
value creation, developing practice areas deal making, solution support for large
deals, and carve out deals from azure and hybrid cloud perspective.

M Rajashekar Reddy
Solution Architect, Cloud (App Mod, Integrations, Data&AI),
Microsoft Business Unit, Tech Mahindra

M Rajashekar Reddy is a seasoned Multi-Cloud Architect with 17 years of
expertise in product management, pre-sales, and technical architecture. He has
worked with clients in diverse industries like aerospace, healthcare, insurance,
energy, oil and gas, telecom, semiconductors, geospatial, and transportation. His
skills encompass Azure, AWS, GCP, OCI, integrations, data, ai, automation,
technical program management, delivery leadership, product management,
pre-sales, proposal management, and agile project management.

At Tech Mahindra, he collaborates with alliances to bring technology best
practices, show-casing the benefits of cloud architecture through cost
reduction, increased productivity, faster turnaround times, high availability,
scalability, resilience, performance, and security. He focuses on developing
in-house capabilities for supporting new offerings, implementing cloud
integration and cloud performance engineering best practices, and providing
advisory services for cloud native and non-native approaches. He also develops
business cases and joint GTM plans with partners, creating collaterals and
reusable artefacts across various domains and infrastructures.

12

Copyright © Tech Mahindra 2023. All Rights Reserved.
Disclaimer. Brand names, logos and trademarks used herein remain the property of their respective owners.

Jegatha Antony
Solution Architect (Data&AI), Microsoft Business Unit, Tech Mahindra

Jegatha Antony has 15 years of experience in product development and
architecture of projects in banking, logistics and telecommunications. Her
expertise extends to Big Data technologies like Spark, Kafka. She is currently
working on solutions that leverage the public cloud AWS and Azure.

At Tech Mahindra, her primary focus is on helping customers implement and
scale new services using Azure AI, data platform, ML and develop POCs,
document best practices. She is very instrumental in the implementation of
comprehensive data governance frameworks for reengineering initiatives.

