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We analyze NGFW functions running 
on Arm cores and provide a guide on 
how to optimize for high throughput 
while scaling to multiple cores. 

We show how to achieve greater than 
200 Gbps throughput by scaling 
Vector Packet Processing (VPP) and 
Snort instances across multiple Arm 
Neoverse-N1-based cores. 

We recommend best practices and 
optimizations that are publicly 
available on Gitlab repositories.

Abstract
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Next generation firewalls (NGFW) provide advanced security functions, diving into 
the application layer and performing a thorough analysis to prevent malware. 
NGFWs decrypt traffic, performing deep packet inspection to compare against 
known patterns and artificial intelligence (AI) powered pattern matching. These 
functions are quite demanding, and if not properly deployed or configured, would 
overwhelm the compute resources and quickly become inefficient in delivering the 
optimal throughput while also possibly racking up costs to operate. In this paper, 
we demonstrate the effective deployment of NGFW on Arm Neoverse powered 80 
core Ampere® Altra® processor to achieve greater than 200 Gbps throughput 
while utilizing only 48 cores of CPU, leaving the additional cores to be available for 
other tasks.

Introduction
In this paper, we will walk you through the steps to support over 200 Gbps of 
throughput traffic with an elastic virtual NGFW by scaling VPP and Snort instances 
on an Arm Neoverse-N1-based processor.   We use simulated real-time application 
data and follow the industry accepted TRex test framework. We will review the 
architecture and present the optimal system setup and configuration required to 
achieve the highest performance. 

The Arm Neoverse-N1 CPU is part of the Arm Neoverse family of Infrastructure 
CPUs. It is optimized for handling a wide range of cloud-native workloads at 
world-class levels of performance, efficiency, and compute density. It adds up to a 
more flexible, scalable, competitive infrastructure for cloud providers, carriers, 
developers, and customers.

Key Takeaways
While we demonstrate the effective 
deployment of NGFW, this is just one 
workload out of many 
software-defined networking 
workloads that can see similar 
benefits, be it performance, 
throughput, total cost of operation, 
or watt. With proper fine-tuning and 
configurations, one can realize these 
benefits across various workloads 
ranging from databases, CI/CD tools, 
web servers, ML, AI, video streaming, 
and many more. 
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Our test environment consists of 2 systems:  a traffic generator (TG) and a 
device under test (DUT). DUT comprises the following software modules: 

Ubuntu
Linux OS

VPP
routing SW

Data plane development kit
(DPDK) NIC Poll mode driver 

Snort intrusion
prevention system (IPS)

Figure 1: Functional overview of NGFW

Software System Overview

All the metrics are compared with decode and detect-max IPS rules, where 
decode determines the underlying protocol like Ethernet, IP, or TCP in the 
packet, and detect-max module is related to deep packet inspection (DPI) of 
application layer data and its IPS mechanism.

We use the Trex application as a traffic generator. 

Figure 1 displays the functional view of the NGFW. The internet traffic is 
generated from TRex and fed to the DUT (External.net). The DPDK poll mode 
driver pulls the traffic from the NIC, and the packets undergo Ethernet, IP, and 
stateful access control list (ACL) packet processing. The packet is further 
classified in the Snort plugin of VPP and is relatively load balanced across 
multiple Snort instances through the lockless data acquisition (DAQ) framework. 
Deep packet inspection occurs in the Snort application to detect and filter 
malicious packets. All valid packets are sent back through DAQ, DPDK, and 
eventually the internal-facing NIC and TRex. 



04

NGFW Software Architecture
We have considered VPP and Snort open-source applications because they 
allow high-speed packet processing methods. We have used multiple VPP 
threads, called worker VPP (WV) and multiple Snort instances (SI). Due to its 
flexibility in using different numbers of VPP and Snort cores, it allows users 
to set VPP and Snort instances according to their requirements. Since VPP 
and Snort operate with two separate cores, we have used DAQ as an 
interface for packet processing between VPP and Snort due to its lockless 
architecture. The load balancing across VPP and Snort is done using the 
5-tuple hashing method, which allows the effective distribution of packets 
across different Snort instances. Packet flow across DUT is shown in Figure 2. 

After receiving the traffic, it is loaded across different worker VPPs, and each 
worker VPP can send traffic across different Snort instances. In stateful case, all 
packets from the same flow are processed from specific worker VPP and Snort 
instance. 

Several fine-tuning methods and system grub changes are done to achieve 
better performance. Details can be found in Appendix section (6 & 7).

W V-1 W V-n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

.

W V-1 W V-n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
.

SI-1 SI-2 SI-mSI-3

Traffic output

Traffic input

Figure 2: NGFW software architecture
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Benchmarking Methodology 

Results

We consider the following parameters while benchmarking the test results:

Test Setup: Two-way topology consisting of TG and DUT connected via high-capacity 
Mellanox ConnectX-6 network cards. We have used Trex application as a traffic generator on 
TG, and VPP and Snort on DUT as open-source applications. The experiment has been 
conducted with two different types of Snort IPS rules (decode and detect-max), which 
aligns with the expectations of NGFWs. In the detect-max rule set, we have 33279 rules 
related to packet inspection for application layer protocols. No specific rules are set for 
decode, where all packets will be analyzed for underlying protocols like Ethernet, IP, and 
TCP. All the tests are done by varying VPP and Snort instance configurations and verifying 
different traffic patterns generated by the Trex application. All the metrics are compared 
with decode and detect-max rules. We used the following VPP and Snort instance numbers 
for each test case; these numbers are optimal pairs based on multiple tests. In decode, we 
used 12 VPP and 36 to 40 Snort instances, while in detect-max, we used 12 VPP and 12 to 
13 Snort instances. Details of the lab setup and different test cases are added in the user 
guide; refer to Appendix section (13).

Throughput is the amount of data transferred in Gbps, which we measure and compare 
against different packet sizes. It is considered one of the important metrics in large data 
centers where vast amounts of data need to be handled in an effective way. Figure 3 
provides throughput data as we scale the number of Snort instances, and Figure 4 provides 
throughput data for decode and detect-max rules for different types of traffic. 

Throughput

Here, we present the maximum throughput achieved in our system with different types of 
traffic and IPS rules.  
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Figure 3: Throughput results across multiple SNORT instances
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Packets Per Second (PPS)
Packet rate is the number of packets per second for different packet sizes. Packet size 
and rate are two crucial parameters that must be considered when evaluating and 
analyzing the performance of networks. Figure 5 highlights the maximum packets per 
second achieved in our system.

Concurrent Connections
A concurrent connection is a session that happens simultaneously with another event 
that is already running. We can have multiple events running at the same time, each 
with a different user. This parameter also tells how many sessions/requests can be 
handled per second when handling real-time applications. Figure 6 showcases the 
maximum concurrent connections achieved in our system.

Memory Utilization
Memory utilization is amount of the memory used versus memory available at a given 
moment. This is an important parameter for monitoring physical memory usage and 
identifying memory overflow conditions. Memory utilization is always proportional to 
the amount of traffic the system processes. Hence, while designing any system, this 
data helps in making decisions on required memory. Figure 7 is a view of the memory 
utilization with different types of traffic through our system. 

Figure 5: PPS (in MPPS) comparing with di�erent packet types
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Figure 6: Concurrent connections with di�erent packet types
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Figure 7: Memory utilization
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1. Block Diagram and Test Setup
The complete setup consists of TG and DUT. Both devices are connected via 
100 Gig Mellanox ConnectX-6 network cards. Traffic is generated from Trex and 
sent to DUT, where packets are processed over VPP and Snort applications.

The lab setup details, application installation steps, system configuration steps, 
TG-DUT configuration steps, running and testing traffic data between TG and 
DUT, and KPI measurements are discussed in the NGFW user guide listed in 
Appendix section (13).

unix
{
  log /tmp/vpe.log
  cli-listen /run/vpp/cli.sock
  cli-no-pager 
  nodaemon 
  full-coredump 
}
memory
{
  main-heap-size 2G
  main-heap-page-size 1G
  default-hugepage-size 1G
}
statseg
{
  size 2G
  page-size 1G
  per-node-counters on
}

Following is the VPP startup file and the corresponding command lines needed 
to bring up VPP. The command lines are used to define addresses and neighbors 
for the Home and External Network.

Appendix 

2. Traffic Profile Overview

3. VPP Startup Configuration

Traffic Generation Source: Trex (as Wireshark capture in “.pcap” format)

Number of Flows: Total number of flows are based on the client and server, 
IP ranges are configured in the Trex test suite

Number of Packets: Total number of flows generated by Trex * number of 
packets in Wireshark capture

Average Packet Size: Tested with different packet sizes (64B, 512B, 1024B, 
1518B, and mixed)

Figure 8: Block diagram

CSIT – Traffic 
Automation

TRex – Traffic 
generator

TG – Traffic generator DUT – Device under test
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plugins
{
  plugin default
  {
    disable  
  }
  plugin dpdk_plugin.so
  {
    enable  
  }
  plugin perfmon_plugin.so
  {
    enable  
  }
  plugin snort_plugin.so
  {
    enable
  }
}
cpu
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{
  main-core 1
  corelist-workers 2,3,4,5,6,7,8,9,10,11,12,13
}
buffers { buffers-per-numa 1048576 }
dpdk
{
  dev 0001:01:00.0 { name eth0}
  dev 0000:01:00.0 { name eth1}
  log-level debug

set interface ip address eth0 
10.10.1.1/24
set interface ip address eth1 
10.10.2.1/24
set interface state eth0 up
set interface state eth1 up
ip route add 16.0.0.0/8 via 
10.10.1.2
ip route add 48.0.0.0/8 via 
10.10.2.2

snort create-instance name snort1 
queue-size 8192

  uio-driver vfio-pci
  dev default
  {
    num-rx-queues 12
    num-tx-queues 12
    num-rx-desc 1024
    num-tx-desc 1024
  }
  no-multi-seg
}

Figure 9: VPP startup.conf

Figure 10: Configuring VPP interfaces and starting SNORT instances

Figure 11: SNORT commands for different types of IPS rules

Following is the VPP cli configuration to route traffic from the interface and 
create Snort instances.

4. VPP Cli Configuration

Snort invoked with the following command line:

System grub provides essential parameters. By updating these, we can improve 
hardware performance. Here are a few of these parameters: 

CPU Isolation: It is one of the kernel boot parameters; it helps isolate certain 
cores/CPUs for specific tasks. From Figure-12, the parameter – “isolcpus” is used 
to set CPU isolation.

HugePage Memory: This parameter is used as one of the memory management 
techniques in modern computer systems to improve performance by using 
larger memory blocks than the default page size. It helps reduce the pressure 
on the Translation Lookaside Buffer (TLB) and lowers the overhead of managing 
memory in systems with large amounts of RAM. From Figure-12, parameters – 
“hugepagesz” and “hugepages” are used to set hugepage memory. 

5. SNORT Commands

6. GRUB Commands

snort attach instance snort1 inter-
face eth0
snort attach instance snort1 inter-
face eth1
. . . 
snort create-instance name snort(n) 
queue-size 8192
snort attach instance snort(n) 
interface eth0
snort attach instance snort(n) 
interface eth1

#where n = number of snort instances

Decode.lua:
snort --c $SNORT_LUA_DIR/decode.lua 
--lua "search_engine.search_method = 
'hyperscan'" --snaplen 9000 
--daq-dir=$DAQ_DIR --daq vpp 
--daq-var debug -i snort(n) -k none 
-Q --warn-conf-strict

Detect_Max.lua:
snort --c $SNORT_LUA_DIR/detect-max-
.lua --lua "search_engine.search_-
method = 'hyperscan'" --snaplen 9000 
--daq-dir=$DAQ_DIR --daq vpp 
--daq-var debug -i snort(n) -k none 
-Q --warn-conf-strict
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GRUB_CMDLINE_LINUX="iommu.passthrough=1 nohz_-
full=2-13,18-21,26-29,34-37,42-45 rcu_nocbs=2-13,18-21,26-29,34-37,42-45 
isolcpus=nohz,domain,managed_irq,2-13,18-21,26-29,34-37,42-45 irqaffini-
ty=0-1,14-17,22-25,30-33,38-41,46-79 default_hugepagesz=1G hugepagesz=1G 
hugepages=64 isolcpus=nohz,domain,2-13,18-21,26-29,34-37,42-45 transpar-
ent_hugepage=madvise cpufreq.off=1"

Figure 12: GRUB changes

There are no specific numbers that VPP or Snort provides to set the parameter: 
hugepage memory. This number is derived based on different test trials.

8. DUT System Configuration

Increased Hugepages and GRUB in DUT 
to support huge memory

Cache stashing, CPU clock frequency 
tuning, CPU isolation

Software improvements

Enhancement to SNORT plugin within 
VPP to support multiple SNORT instances

Enhancement to SNORT plugin support 
load balancing using the HASH method to 

7. Fine-Tuning Methods
Hardware-side/system-side configuration

increase traffic sharing across multiple 
snorts from multiple worker VPPs

Tested with different VPP and SNORT 
instances and achieved different 
numbers for different types of traffic 
and IPS to achieve better throughput. 
Note: All the tests are based on the Trex 
test framework as a traffic generator.

VPP startup.conf tuning: Updated 
different parameters like dpdk and other 
parameters to achieve better results.

Metric Units DUT
Vendor ID

System

Chassis

Architecture

CPU Model

CPU Frequency

Sockets

Numa Nodes

Threads per Core

Cores per socket

Core Count

DRAM - Memory 

Transparent Huge

Pages

Hugepagesize

Ethernet Adapter

OS

kernel

MHZ

GB

kb

Arm

Supermicro

Supermicro Main Server Chassis

aarch64

Arm Neoverse-N1

(Ampere® Altra® Processor)

3000

1

1

1

80

 80

512 (16x32GB

DDR4 3200 MT/s)

madvise

1048576

Mellanox-MT28908 Family [ConnectX-6]

Ubuntu - 20.04 LTS

5.17.1
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9. UDP Traffic Results

10. SNORT Rule Sets

11. DUT Software Configuration

Metrics Units Values
Average Packet Size

Throughput

Packet Per second

Concurrent Connections

Number of VPP worker threads

Number of Snort Instances

64

12.62 

12.33

11709

12

36

Bytes

Gbps

MPPs

512

100.9 

12.48 

11708 

12

36

1024

202.04 

12.42 

9331 

12

36

1518

225 

9.2

8634 

12

36

Imix Traffic

62.5 

11.62 

9930 

12

36

Attribute Value
Name

Source

Version

Number of rules (detect-max)

Number of rules (decode)

Registered Rules

https://www.snort.org/downloads#rules

snortrules-snapshot-31110.tar.gz

33279

There are no specific rules for decode where all
the packets will be analyzed for underlying protocols like
Ethernet, IP, and TCP

So are Version
v23.10

3.1.25.0

3.0.9

1.9.1-3

5.4.7

Snort Registered Rules

Captured from CSIT execution

NDR (0%)

Interupt

1 queue per VPP thread

1 queue per VPP thread

4096

4096

1048576

8192

VPP

Snort

DAQ

libpcap

vectorscan

Snort Rules

Pcap

Measurement Methodology

DAQ mode

num-rx-queues

num-tx-queues

num-rx-desc

num-tx-desc

buffers-per-numa

DAQ queue-size
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12. Gitlab Reference for VPP/CSIT/Trex Changes
As part of this exercise, multiple changes were made to open-source 
applications like Trex, CSIT, and VPP to achieve the required target. Following are 
the private gitlab repos for Trex, CSIT, and VPP. Users can find details of the 
changes within these repos.

13. Arm Performance Measurement with VPP 
and SNORT

To measure Arm performance with VPP and Snort, follow the user guide

Trex
techmarm1 / 
techmarm_trex-cor
e · GitLab

https://gitlab.com/techmarm1/techm_ngfw_user_guide

References:
PMU study reference link: 

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper
/neoverse-n1-core-performance-v2.pdf

VPP
techmarm1 / 
techmarm_vpp · 
GitLab

CSIT
techmarm1 / 
techmarm_csit · 
GitLab
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