
Performance Optimization for

Next-Generation
Firewall (NGFW)

Whitepaper

Contents

01
Abstract 02

02

04

05

08

02

03

05

07

12

02
Key Takeaways

04
Software System Overview

03
Introduction

05
NGFW Software
Architecture

06
Benchmarking Methodology

07
Results

08
Conclusion

About the Author(s)

09
Appendix

10
References:

01

Contents

01
Abstract 02

02

04

05

08

02

03

05

07

12

02
Key Takeaways

04
Software System Overview

03
Introduction

05
NGFW Software
Architecture

06
Benchmarking Methodology

07
Results

08
Conclusion

About the Author(s)

09
Appendix

10
References:

01

We analyze NGFW functions running
on Arm cores and provide a guide on
how to optimize for high throughput
while scaling to multiple cores.

We show how to achieve greater than
200 Gbps throughput by scaling
Vector Packet Processing (VPP) and
Snort instances across multiple Arm
Neoverse-N1-based cores.

We recommend best practices and
optimizations that are publicly
available on Gitlab repositories.

Abstract

02

Next generation firewalls (NGFW) provide advanced security functions, diving into
the application layer and performing a thorough analysis to prevent malware.
NGFWs decrypt traffic, performing deep packet inspection to compare against
known patterns and artificial intelligence (AI) powered pattern matching. These
functions are quite demanding, and if not properly deployed or configured, would
overwhelm the compute resources and quickly become inefficient in delivering the
optimal throughput while also possibly racking up costs to operate. In this paper,
we demonstrate the effective deployment of NGFW on Arm Neoverse powered 80
core Ampere® Altra® processor to achieve greater than 200 Gbps throughput
while utilizing only 48 cores of CPU, leaving the additional cores to be available for
other tasks.

Introduction
In this paper, we will walk you through the steps to support over 200 Gbps of
throughput traffic with an elastic virtual NGFW by scaling VPP and Snort instances
on an Arm Neoverse-N1-based processor. We use simulated real-time application
data and follow the industry accepted TRex test framework. We will review the
architecture and present the optimal system setup and configuration required to
achieve the highest performance.

The Arm Neoverse-N1 CPU is part of the Arm Neoverse family of Infrastructure
CPUs. It is optimized for handling a wide range of cloud-native workloads at
world-class levels of performance, efficiency, and compute density. It adds up to a
more flexible, scalable, competitive infrastructure for cloud providers, carriers,
developers, and customers.

Key Takeaways
While we demonstrate the effective
deployment of NGFW, this is just one
workload out of many
software-defined networking
workloads that can see similar
benefits, be it performance,
throughput, total cost of operation,
or watt. With proper fine-tuning and
configurations, one can realize these
benefits across various workloads
ranging from databases, CI/CD tools,
web servers, ML, AI, video streaming,
and many more.

03

Our test environment consists of 2 systems: a traffic generator (TG) and a
device under test (DUT). DUT comprises the following software modules:

Ubuntu
Linux OS

VPP
routing SW

Data plane development kit
(DPDK) NIC Poll mode driver

Snort intrusion
prevention system (IPS)

Figure 1: Functional overview of NGFW

Software System Overview

All the metrics are compared with decode and detect-max IPS rules, where
decode determines the underlying protocol like Ethernet, IP, or TCP in the
packet, and detect-max module is related to deep packet inspection (DPI) of
application layer data and its IPS mechanism.

We use the Trex application as a traffic generator.

Figure 1 displays the functional view of the NGFW. The internet traffic is
generated from TRex and fed to the DUT (External.net). The DPDK poll mode
driver pulls the traffic from the NIC, and the packets undergo Ethernet, IP, and
stateful access control list (ACL) packet processing. The packet is further
classified in the Snort plugin of VPP and is relatively load balanced across
multiple Snort instances through the lockless data acquisition (DAQ) framework.
Deep packet inspection occurs in the Snort application to detect and filter
malicious packets. All valid packets are sent back through DAQ, DPDK, and
eventually the internal-facing NIC and TRex.

04

NGFW Software Architecture
We have considered VPP and Snort open-source applications because they
allow high-speed packet processing methods. We have used multiple VPP
threads, called worker VPP (WV) and multiple Snort instances (SI). Due to its
flexibility in using different numbers of VPP and Snort cores, it allows users
to set VPP and Snort instances according to their requirements. Since VPP
and Snort operate with two separate cores, we have used DAQ as an
interface for packet processing between VPP and Snort due to its lockless
architecture. The load balancing across VPP and Snort is done using the
5-tuple hashing method, which allows the effective distribution of packets
across different Snort instances. Packet flow across DUT is shown in Figure 2.

After receiving the traffic, it is loaded across different worker VPPs, and each
worker VPP can send traffic across different Snort instances. In stateful case, all
packets from the same flow are processed from specific worker VPP and Snort
instance.

Several fine-tuning methods and system grub changes are done to achieve
better performance. Details can be found in Appendix section (6 & 7).

W V-1 W V-n
.

.

W V-1 W V-n.
.

SI-1 SI-2 SI-mSI-3

Traffic output

Traffic input

Figure 2: NGFW software architecture

05

Benchmarking Methodology

Results

We consider the following parameters while benchmarking the test results:

Test Setup: Two-way topology consisting of TG and DUT connected via high-capacity
Mellanox ConnectX-6 network cards. We have used Trex application as a traffic generator on
TG, and VPP and Snort on DUT as open-source applications. The experiment has been
conducted with two different types of Snort IPS rules (decode and detect-max), which
aligns with the expectations of NGFWs. In the detect-max rule set, we have 33279 rules
related to packet inspection for application layer protocols. No specific rules are set for
decode, where all packets will be analyzed for underlying protocols like Ethernet, IP, and
TCP. All the tests are done by varying VPP and Snort instance configurations and verifying
different traffic patterns generated by the Trex application. All the metrics are compared
with decode and detect-max rules. We used the following VPP and Snort instance numbers
for each test case; these numbers are optimal pairs based on multiple tests. In decode, we
used 12 VPP and 36 to 40 Snort instances, while in detect-max, we used 12 VPP and 12 to
13 Snort instances. Details of the lab setup and different test cases are added in the user
guide; refer to Appendix section (13).

Throughput is the amount of data transferred in Gbps, which we measure and compare
against different packet sizes. It is considered one of the important metrics in large data
centers where vast amounts of data need to be handled in an effective way. Figure 3
provides throughput data as we scale the number of Snort instances, and Figure 4 provides
throughput data for decode and detect-max rules for different types of traffic.

Throughput

Here, we present the maximum throughput achieved in our system with different types of
traffic and IPS rules.

6.11
11.68

22.76

45.53

65.08

84.49

110.44
117.17

126.83

149.4
155.96

181.98

202.04

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
in

Gb
ps

Number of SNORT instances

Throughput in Gbps

Throughput in Gbps

202.04

62.57

0

50

100

150

200

250

Th
ro

up
ut

 in
 G

bp
s

Types of traffic

Throughput with decode rules

1024 UDP Imix

21.17

1.27

0

5

10

15

20

25

Th
ro

ug
hp

ut
 in

 G
bp

s

Types of traffic

Throughput with detect-max rules

1024 UDP Imix

Figure 4: Throughput (in Gbps) with different packet types

Figure 3: Throughput results across multiple SNORT instances

06

Packets Per Second (PPS)
Packet rate is the number of packets per second for different packet sizes. Packet size
and rate are two crucial parameters that must be considered when evaluating and
analyzing the performance of networks. Figure 5 highlights the maximum packets per
second achieved in our system.

Concurrent Connections
A concurrent connection is a session that happens simultaneously with another event
that is already running. We can have multiple events running at the same time, each
with a different user. This parameter also tells how many sessions/requests can be
handled per second when handling real-time applications. Figure 6 showcases the
maximum concurrent connections achieved in our system.

Memory Utilization
Memory utilization is amount of the memory used versus memory available at a given
moment. This is an important parameter for monitoring physical memory usage and
identifying memory overflow conditions. Memory utilization is always proportional to
the amount of traffic the system processes. Hence, while designing any system, this
data helps in making decisions on required memory. Figure 7 is a view of the memory
utilization with different types of traffic through our system.

Figure 5: PPS (in MPPS) comparing with di�erent packet types

12.42

11.69

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

PP
S

in
 M

PP
S

Types of traffic

Packets per seconds for decode rules in MPPS

1024 UDP Imix

1.3

0.233

0

0.2

0.4

0.6

0.8

1

1.2

1.4

PP
S

in
 M

PP
S

Types of traffic

Packets per seconds for detect-max rules in MPPS

1024 UDP Imix

Figure 6: Concurrent connections with di�erent packet types

9331

9930

9000

9200

9400

9600

9800

10000

Co
nc

ur
re

nt
 c

Types of traffic

Concurrent c ode rules

1024 UDP Imix

1236

198

0

200

400

600

800

1000

1200

1400

Co
nc

ur
re

nt
 c

Types of traffic

Concurrent c tect-max rules

1024 UDP Imix

Figure 7: Memory utilization

45.1

26.36

0

10

20

30

40

50

M
em

or
a

s

Types of traffic

Memor a ode rules in GB/s

1024 UDP Imix

4.63

3.69

0

1

2

3

4

5

M
em

or
a

s

Types of traffic

Memor a tect-max rules in GB/s

1024 UDP Imix

07

About the Author(s)

The traffic levels generated in real-world critical applications and services are
increasing day by day. A high-performance system that can handle more traffic is
needed. This can lead to high investment and maintenance costs. In this project,
we enhance the Arm Neoverse system's capabilities to handle more traffic. We
provide clear guidance on how to scale VPP and Snort instances to achieve over
200Gbps traffic with 48 Arm Neoverse-N1 cores. We provide KPIs as well as
the code needed to reproduce these results.

Manjunatha holds a Master's degree in
systems analysis from NITK Surathkal. He
is currently the module lead at Tech
Mahindra and has 16+ years of experience
in different domains like networking, data
plane and control plane stacks, system
architect, data science and others.

Lakshmi Prabha holds an Engineering
degree in electronics and works as a test
lead at Tech Mahindra. She has nine years
of professional experience in testing in the
networking domain with extensive
knowledge in automation.

Matthew Dirba graduated in 2002 from
Texas A&M University with a B.S. in
Computer Engineering and currently works
as a principal performance engineer in the
infrastructure line of business at Arm.
Expertise in network/server performance
and software development.

Geetha Lakha has an Engineering degree
in electronics and communication and a
management certification from IIT, Bombay.
She has clocked over 20 years in the
corporate world. She heads the
networking and optical domain practice in
Tech Mahindra and has delivered projects
for TEM/OEM customers like Arm, Intel,
Cisco, Infinera, Nokia, Juniper, Arris, F5,
Netscout, and others.

Conclusion

Manjunatha I
Module Lead, Tech Mahindra

E Lakshmi Prabha
Tech Lead, Tech Mahindra

Geetha Lakha
Practice Head, Optical, Access and
Networking Division, Tech Mahindra

,

Matthew Dirba
Principal Performance Engineer,
Arm

08

1. Block Diagram and Test Setup
The complete setup consists of TG and DUT. Both devices are connected via
100 Gig Mellanox ConnectX-6 network cards. Traffic is generated from Trex and
sent to DUT, where packets are processed over VPP and Snort applications.

The lab setup details, application installation steps, system configuration steps,
TG-DUT configuration steps, running and testing traffic data between TG and
DUT, and KPI measurements are discussed in the NGFW user guide listed in
Appendix section (13).

unix
{
 log /tmp/vpe.log
 cli-listen /run/vpp/cli.sock
 cli-no-pager
 nodaemon
 full-coredump
}
memory
{
 main-heap-size 2G
 main-heap-page-size 1G
 default-hugepage-size 1G
}
statseg
{
 size 2G
 page-size 1G
 per-node-counters on
}

Following is the VPP startup file and the corresponding command lines needed
to bring up VPP. The command lines are used to define addresses and neighbors
for the Home and External Network.

Appendix

2. Traffic Profile Overview

3. VPP Startup Configuration

Traffic Generation Source: Trex (as Wireshark capture in “.pcap” format)

Number of Flows: Total number of flows are based on the client and server,
IP ranges are configured in the Trex test suite

Number of Packets: Total number of flows generated by Trex * number of
packets in Wireshark capture

Average Packet Size: Tested with different packet sizes (64B, 512B, 1024B,
1518B, and mixed)

Figure 8: Block diagram

CSIT – Traffic
Automation

TRex – Traffic
generator

TG – Traffic generator DUT – Device under test

D
P

D
K

Et
he

rn
et

AC
Ls

V
P

P

D
A

Q

SN
O

R
TS

(d

ec
od

e,
 d

et
ec

t)

100 Gig
Mellanox NIC

plugins
{
 plugin default
 {
 disable
 }
 plugin dpdk_plugin.so
 {
 enable
 }
 plugin perfmon_plugin.so
 {
 enable
 }
 plugin snort_plugin.so
 {
 enable
 }
}
cpu

09

{
 main-core 1
 corelist-workers 2,3,4,5,6,7,8,9,10,11,12,13
}
buffers { buffers-per-numa 1048576 }
dpdk
{
 dev 0001:01:00.0 { name eth0}
 dev 0000:01:00.0 { name eth1}
 log-level debug

set interface ip address eth0
10.10.1.1/24
set interface ip address eth1
10.10.2.1/24
set interface state eth0 up
set interface state eth1 up
ip route add 16.0.0.0/8 via
10.10.1.2
ip route add 48.0.0.0/8 via
10.10.2.2

snort create-instance name snort1
queue-size 8192

 uio-driver vfio-pci
 dev default
 {
 num-rx-queues 12
 num-tx-queues 12
 num-rx-desc 1024
 num-tx-desc 1024
 }
 no-multi-seg
}

Figure 9: VPP startup.conf

Figure 10: Configuring VPP interfaces and starting SNORT instances

Figure 11: SNORT commands for different types of IPS rules

Following is the VPP cli configuration to route traffic from the interface and
create Snort instances.

4. VPP Cli Configuration

Snort invoked with the following command line:

System grub provides essential parameters. By updating these, we can improve
hardware performance. Here are a few of these parameters:

CPU Isolation: It is one of the kernel boot parameters; it helps isolate certain
cores/CPUs for specific tasks. From Figure-12, the parameter – “isolcpus” is used
to set CPU isolation.

HugePage Memory: This parameter is used as one of the memory management
techniques in modern computer systems to improve performance by using
larger memory blocks than the default page size. It helps reduce the pressure
on the Translation Lookaside Buffer (TLB) and lowers the overhead of managing
memory in systems with large amounts of RAM. From Figure-12, parameters –
“hugepagesz” and “hugepages” are used to set hugepage memory.

5. SNORT Commands

6. GRUB Commands

snort attach instance snort1 inter-
face eth0
snort attach instance snort1 inter-
face eth1
. . .
snort create-instance name snort(n)
queue-size 8192
snort attach instance snort(n)
interface eth0
snort attach instance snort(n)
interface eth1

#where n = number of snort instances

Decode.lua:
snort --c $SNORT_LUA_DIR/decode.lua
--lua "search_engine.search_method =
'hyperscan'" --snaplen 9000
--daq-dir=$DAQ_DIR --daq vpp
--daq-var debug -i snort(n) -k none
-Q --warn-conf-strict

Detect_Max.lua:
snort --c $SNORT_LUA_DIR/detect-max-
.lua --lua "search_engine.search_-
method = 'hyperscan'" --snaplen 9000
--daq-dir=$DAQ_DIR --daq vpp
--daq-var debug -i snort(n) -k none
-Q --warn-conf-strict

10

GRUB_CMDLINE_LINUX="iommu.passthrough=1 nohz_-
full=2-13,18-21,26-29,34-37,42-45 rcu_nocbs=2-13,18-21,26-29,34-37,42-45
isolcpus=nohz,domain,managed_irq,2-13,18-21,26-29,34-37,42-45 irqaffini-
ty=0-1,14-17,22-25,30-33,38-41,46-79 default_hugepagesz=1G hugepagesz=1G
hugepages=64 isolcpus=nohz,domain,2-13,18-21,26-29,34-37,42-45 transpar-
ent_hugepage=madvise cpufreq.off=1"

Figure 12: GRUB changes

There are no specific numbers that VPP or Snort provides to set the parameter:
hugepage memory. This number is derived based on different test trials.

8. DUT System Configuration

Increased Hugepages and GRUB in DUT
to support huge memory

Cache stashing, CPU clock frequency
tuning, CPU isolation

Software improvements

Enhancement to SNORT plugin within
VPP to support multiple SNORT instances

Enhancement to SNORT plugin support
load balancing using the HASH method to

7. Fine-Tuning Methods
Hardware-side/system-side configuration

increase traffic sharing across multiple
snorts from multiple worker VPPs

Tested with different VPP and SNORT
instances and achieved different
numbers for different types of traffic
and IPS to achieve better throughput.
Note: All the tests are based on the Trex
test framework as a traffic generator.

VPP startup.conf tuning: Updated
different parameters like dpdk and other
parameters to achieve better results.

Metric Units DUT
Vendor ID

System

Chassis

Architecture

CPU Model

CPU Frequency

Sockets

Numa Nodes

Threads per Core

Cores per socket

Core Count

DRAM - Memory

Transparent Huge

Pages

Hugepagesize

Ethernet Adapter

OS

kernel

MHZ

GB

kb

Arm

Supermicro

Supermicro Main Server Chassis

aarch64

Arm Neoverse-N1

(Ampere® Altra® Processor)

3000

1

1

1

80

 80

512 (16x32GB

DDR4 3200 MT/s)

madvise

1048576

Mellanox-MT28908 Family [ConnectX-6]

Ubuntu - 20.04 LTS

5.17.1

11

9. UDP Traffic Results

10. SNORT Rule Sets

11. DUT Software Configuration

Metrics Units Values
Average Packet Size

Throughput

Packet Per second

Concurrent Connections

Number of VPP worker threads

Number of Snort Instances

64

12.62

12.33

11709

12

36

Bytes

Gbps

MPPs

512

100.9

12.48

11708

12

36

1024

202.04

12.42

9331

12

36

1518

225

9.2

8634

12

36

Imix Traffic

62.5

11.62

9930

12

36

Attribute Value
Name

Source

Version

Number of rules (detect-max)

Number of rules (decode)

Registered Rules

https://www.snort.org/downloads#rules

snortrules-snapshot-31110.tar.gz

33279

There are no specific rules for decode where all
the packets will be analyzed for underlying protocols like
Ethernet, IP, and TCP

So are Version
v23.10

3.1.25.0

3.0.9

1.9.1-3

5.4.7

Snort Registered Rules

Captured from CSIT execution

NDR (0%)

Interupt

1 queue per VPP thread

1 queue per VPP thread

4096

4096

1048576

8192

VPP

Snort

DAQ

libpcap

vectorscan

Snort Rules

Pcap

Measurement Methodology

DAQ mode

num-rx-queues

num-tx-queues

num-rx-desc

num-tx-desc

buffers-per-numa

DAQ queue-size

12

12. Gitlab Reference for VPP/CSIT/Trex Changes
As part of this exercise, multiple changes were made to open-source
applications like Trex, CSIT, and VPP to achieve the required target. Following are
the private gitlab repos for Trex, CSIT, and VPP. Users can find details of the
changes within these repos.

13. Arm Performance Measurement with VPP
and SNORT

To measure Arm performance with VPP and Snort, follow the user guide

Trex
techmarm1 /
techmarm_trex-cor
e · GitLab

https://gitlab.com/techmarm1/techm_ngfw_user_guide

References:
PMU study reference link:

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper
/neoverse-n1-core-performance-v2.pdf

VPP
techmarm1 /
techmarm_vpp ·
GitLab

CSIT
techmarm1 /
techmarm_csit ·
GitLab

Copyright © Tech Mahindra 2024. All Rights Reserved.
Disclaimer. Brand names, logos and trademarks used herein remain the property of their respective owners.

