

Copyright © 2017, Tech Mahindra. All rights reserved. 1

2
Copyright © 2020, Tech Mahindra. All rights reserved.

Deep Learning continues to be

the hottest technology

Hareesh Kumar Puthanmadom Seetharaman

Principal Solution Architect, COE Head - NLP

Date: 31 – March - 2020

3
Copyright © 2020, Tech Mahindra. All rights reserved.

Table of contents

Contents

Section 1... 4

Background .. 5

Section 2... 6

Feature wise comparison in detail: Comments and Observations ... 8

Overall observation on the comparison summary – TF1.13, TF2.0, Pytorch 11

Section 3... 12

Overall observation from the experiment – TF1.X to TF2.0 Conversion 13

Section 4... 14

Overall observation from the experiment – TF2.0 – Pytorch Comparison 15

Conclusion ... 16

References .. 17

Thank You .. 19

4
Copyright © 2020, Tech Mahindra. All rights reserved.

Section 1
A study to understand how Tensor Flow (TF) got the edge
over its competitor PyTorch after the release of its latest
version TF 2.0 (TF 1.0 + Keras).

5
Copyright © 2020, Tech Mahindra. All rights reserved.

“Deep Learning (DL) continues to be the hottest technology in data science. It is gaining exceptional

momentum compared to any other technology under Data Science. Deep Learning (based technologies

has secured the place up in the ladder, as it plays a significant role in achieving the AI dreams, for

organizations, producing results superior to the state of the art in critical and tricky areas such as image

(Computer Vison) processing and NLP.

Each Deep Learning framework has unique characteristics, which

implemented to cater different purposes. They vary in the algorithms,

support and in the quality of the implementation. Top players in this

space includes Tensor Flow (TF), PyTorch, Caffe, Microsoft Cognitive

Toolkit/CNTK, MXNet, Chainer, Keras, and DeepLearning. These

frameworks have evolved over a period with its unique capabilities.

1.1 Background
Background

As a part of defining a solutioning approach, we were required to select the best Deep Learning

framework to suit a particular requirement. We considered the following factors; ease of implementation,

shorter implementation time, ease of understanding, larger developer community, support, advanced

feature list.

Our initial approach was to conduct a high-level assessment of

available frameworks and shortlist the top two frameworks from

the list, considering the main areas which are listed below the

frameworks which were identified through the first level

assessment: Tensor Flow (TF) and Pytorch.

- Availability of pre-trained models
- Licensing model

- Connected to a research university or
academia

- Benchmarks : Speed of inference, Speed
of training

- Known large-scale deployments by
notable companies

- Availability of the dedicated cloud
optimized for a framework

- Engineering productivity
- Availability of debugging tools

- Compatibility (supported languages to
write applications)

- Learning : Quality of the official
documentation

- Open-source
- Supported Deep Learning algorithmic

families and models

- Supported operating systems and
platforms

- Computation Availability of CPU version
optimized by Intel, Support for multiple
CPUs, Horizontal scalability

1.2 Heading 2

6
Copyright © 2020, Tech Mahindra. All rights reserved.

Section 2
Comparison: Tenser Flow and Pytorch

7
Copyright © 2020, Tech Mahindra. All rights reserved.

1.3
1.4 Heading 2

Once the frameworks were identified, comparison of the framework (point-to-point, feature to feature)

across versions was the next step. Future road map plans for both the frameworks were taken into

account before taking a decision. Apart from the above comparison between frameworks, we also

considered doing a comparison between multiple versions of the same framework to ensure the right

selection of the best framework

The final qualitative and quantitative study and comparison: TF 1.0, TF 2.0 and PyTorch.

Comparison was done in multiple steps/stages. The aim was to help guide / help end users to make an

informed decision about the best Deep Learning frameworks (Tensor Flow (TF) & PyTorch) which suits

their needs and resources. To make sure that our study is as comprehensive as possible, we did go

through multiple experiments (Multiple Approaches) using multiple datasets with enough variance and

volume from different areas of Deep Learning (Computer Vision, NLP, etc.) and measure the

performance of the frameworks. The same has been recorded in detail as part of this white paper for

reference.

 Feature wise comparison in detail, Comments & Observations.

 TF1.X to TF2.0 Conversion Experiment with Observations.

8
Copyright © 2020, Tech Mahindra. All rights reserved.

Feature wise comparison in detail: Comments and Observations

The following areas were considered to compare. TF 1.0, TF 2.0 & PyTorch.

 Model Build

 Session and Variable Scoping

 Symbolic and Derivative links

 Debugging

 Data Pipeline

 Distributed Computing

 Model deployment

Areas TF1.13< TF2.0 Comments

Model
Build

 tf.Layers was the primary

package that was used for

building the neural

network.

 The developer was

required to develop the NN

at a very low-level

abstraction, which was

rather time consuming and

complex.

 Multiple lines of code was

required in order to create

a simple NN architecture.

 Rapid prototyping was

difficult and time

consuming

 To build tensor graphs for

complex calculations, a

static graph had to be

envisioned and built from

scratch.

 With TF2.0 tf.keras an

equivalent package is

introduced to build NN.

 The developer can build a

NN with a very high level of

abstraction and avoid

unnecessary complexity.

 A NN architecture can be

built in a few lines of code.

 Rapid prototyping is quick

and very efficient.

 With tf.function, the

developer can concentrate

on building the logic

leaving the graph creation

to TF to handle and build.

 A hybrid approach is

possible with TF2.0 where

for complex customized

calculations the lower level

APIs of TF can be utilized

and for a quick prototyping

& build; the high level

Keras API can be used

 Pytorch is user friendly,

easy to debug and

follows a well-defined

structure.

 TF2.0 reduces the gap.

Keras provides a clean

and rapid prototyping

interface that can be

used to build NN quickly,

debug as it is developed

and make NN

architecture up and

running just in a few lines

of code.

 TF2.0, in addition

provides both means of

completely building a

customized graph when

needed, as well as using

Keras to build models

rapidly. This feature

provides the right level of

abstraction as needed

compared to Pytorch.

Session
and
Variable
Scoping

 This method had relatively

little abstraction for the

developer.

 The developer was

required to build the NN,

maintain the variables in

 The developer can

concentrate on only

building the model.

 Any corresponding

sessions, variables etc.,

 TF helps in removing

sessions and

unnecessary complexity

of maintenance and

variable scoping,

9
Copyright © 2020, Tech Mahindra. All rights reserved.

Areas TF1.13< TF2.0 Comments

the form of placeholders

and think in terms of

sessions and variable

scoping.

 These aspects were really

of no particular importance

to a developer whose

ultimate aim was to have a

model built.

 Unnecessary complexity

was introduced into the

whole build process.

are abstracted away by the

high level API – Keras.

 Eager execution provides a

better way to play around

and experiment with the

API.

 With a simple "import

tensorflow as tf", one can

very quickly build a NN,

with minimum effort.

enabling undivided focus

on the model built.

 As a developer, all one

needs to concentrate on

is the Python

implementation of one’s

logic and leave the rest to

TF.

Symbolic
and
Derivative
links

 Only symbolic links in the

form of sequential and

functional programing

were possible.

 Both symbolic and

derivative programing is

possible, through

sequential, functional and

sub-classing.

 The Model class can be

sub classed to create a NN

layered architecture. This

provides an object oriented

feel to the programing in

TF2.0.

 This provides the end user

to choose the right level of

abstraction needed as per

requirement.

Data
Pipeline

 Since the graphs created

were dynamic graphs,

debugging and monitoring

of the graphs were difficult

and separate sessions

were created to run the

graphs

 With eager executions, the

graphs are static in nature

and can be debugged as

they are being built.

 Easy debugging allows a

developer to detect any

errors as early as

possible.

 In addition to the

features, TF provides a

robust debugging tool

compared to Pytorch.

Data
Pipeline

 Variable management and

data inputs were complex

and needed to be in pre-

defined feed_Dict formats.

 Data is treated as an ETL

process that provides all

the necessary tools to

prepare, clean and

normalize the data.

 Pytorch treats data inputs

using simple methods

and does not consider

that the data has to be

generally processed.

10
Copyright © 2020, Tech Mahindra. All rights reserved.

Areas TF1.13< TF2.0 Comments

 In addition, the complex

feed_Dicts are removed to

be replaced with simple

numpy or tf.data.Datasets

objects.

 TF2.0 treats data as a

pipeline, which allows in

building a production

grade code that can pre-

process the data

efficiently.

Distributed
Computing

 TF1.X system was built to

run and train a single node

system.

 With 2.0 we can make use

of cloud based computing

to train on multi-node

clusters having different

execution modes such as

CPU or GPU or TPU.

 Distributed computing

can make a big

difference in terms of

utilizing cloud hardware’s

to reduce time and cost.

Model
deployment

 TF1.X provided the means

to save a model for either

TF lite or JS depending on

the requirement.

 Developers needed to

convert from one form to

another in order to make it

compatible as per the

requirement.

 With TF2.0 standardizing

the model saving format,

developers can use the

same model in various

formats with minimum

effort.

 Pytorch does not have an

option to use models

through mobile or client

devices.

 TF2.0 enables optimized

models for each

environment to be built

with minimum effort.

Developing production

ready models becomes

easy and efficient.

11
Copyright © 2020, Tech Mahindra. All rights reserved.

Overall observation on the comparison summary – TF1.13, TF2.0, Pytorch

 Keras - TF 2.0, Deep Learning framework has an upper hand over a simple TF i.e. TF 1.0 and

Pytorch. Being a high level implementation framework, it provides the following advantages:

o Rapid prototyping

o Speed of execution

o Easy debugging

o Multiple Back-end support.

 TF 2.0 carries the advantage of having both TF 1.0’s low-level implementation and Kera’s high-level

implementation. This factor clearly makes Tensor flow 2.0 to be in the advantageous position.

 In addition, the TF2.0 library is far cleaner in structure compared to previous version. Multiple libraries

that performed the same functionality have been removed (De- Duplication was done) making it

simpler for the developer to understand and use.

 Compared to its nearest rival, this version reduces the gap with an improved user experience and

features

 TF2.0 provides multiple levels of abstraction, which can suit any type of developer. For example: Like

a researcher who requires a very low level API or a standard ML practitioner who expects a high level

API to build and experiment on models as quickly as possible.

12
Copyright © 2020, Tech Mahindra. All rights reserved.

Section 3
TF1.X to TF2.0 Conversion Experiment

13
Copyright © 2020, Tech Mahindra. All rights reserved.

As a first step towards understanding the complexity while migrating from the older version of Tensorflow

i.e. 1.13 to the latest version 2.0, we identified solutions which were implemented using TF 1.0 (Computer

Vison & NLP based) and efforts were made to migrate that to TF 2.0. This experiment not only played a

significant role in helping us in understanding the new set of features in TF 2.0 but it also helped us in

analyzing the process, effort and complexities involved in migrating from one version to another. This

experiment provided us clear insight on the added enhancement in TF 2.0. To achieve this, we followed

the steps outlined in the TF2.0 conversion documents.

Overall observation from the experiment – TF1.X to TF2.0 Conversion

 Though upgrade script is easy to execute, the script makes only high-level changes to the old version

of code. The remaining functional changes like replacing tf.Session.run calls, changing low-level

variable etc. need to be performed manually.

 TF2 documentation gives out details at a very granular level. Most technical users understand only

high-level information on supporting packages. This would make it difficult to rectify the issues faced

when executing upgraded code.

 Though information about the code changes are provided, the exact module of code changes

required in supporting packages used are not provided.

 For very old versions of tensorflow code, as per documentation, at least two upgrade steps are

required. It cannot be directly converted to TF2.0

 TF2.0 is better than TF1.x when creating a new module since it uses less number of packages; the

new packages used are also more efficient compared to old ones. TF2.0 also reduces major chunk of

codes to abstract versions of it. However, conversion from TF1.x to TF2.0 requires huge amount of

manual work; if the upgrade script could handle a bit more complexity, it would have been more user

friendly.

14
Copyright © 2020, Tech Mahindra. All rights reserved.

Section 4
TF2.0 vs Pytorch Comparison

15
Copyright © 2020, Tech Mahindra. All rights reserved.

Overall observation from the experiment – TF2.0 – Pytorch Comparison

 Speed of execution: TF 1.x requires a computational graph to be built followed by creation of a

Tensorflow session and finally running the session. This improves TF’s speed of execution since the

computational graph makes it possible for TF 1.x to execute extremely efficient through an interpreted

set of instructions (if using Python). Pytorch, on the other hand, interprets instructions as it goes

along, which has cost in terms of execution speed but is more flexible if one needs to modify the NN

algorithm during execution, Whereas TF 1.x requires the entire computational graph to be recreated

and a new session instantiated and run which makes it programmatically inefficient and complicated.

TF 2.0 combines the best of both – the ability to create the computational graph for improved speed if

needed, and the new eager execution mode allows instructions to be executed as they are

encountered for better runtime flexibility.

 Ease of programming: Earlier Pytorch 1.0 had an ease-of-programming advantage over Tensorflow

1.x. it executed instructions right after they were encountered, which was intuitive for developers to

understand. Tensorflow 2.0’s Eager Execution mode has made a huge improvement in allowing

instructions to be executed instantly without the requirement of creating a full computational graph

first, and makes TF 2.0 superior to TF 1.x in this regard.

 Automatic utilization of all GPUs: Pytorch has a capability called Data Parallelism that allows any

AI model to automatically run on the available GPUs in the machine. In Tensorflow 1.x, scaling the

model across multiple GPUs requires a procedure to be followed, which may end up in mis-

configuration if not handled carefully. . In TF 2.0, it is easier to scale the model to multiple GPUs

automatically.

 Flexibility of API: Both TF 1.x and 2.0 both offer a level of flexibility in implementation that is not

matched by Pytorch. TF 1.x as well as 2.0 have a rich API set, providing programmers with various

choices for creating sophisticated neural networks.

 Learning Curve of API: The high flexibility of Tensorflow comes at a cost. Having worked with both

Pytorch as well as TF 1.x and 2.0 alpha, Pytorch is still ahead of TF in terms of intuitive

understanding and ease of use. The rich API of TF 1.x as well as 2.0 gives programmers various

choices for accomplishing the same objective, which makes it harder for the programmer to decide on

the best approach to go with. With Pytorch the library and API calls are fewer and simpler to

understand. In TF’s API (whether 1.x or 2.0), it is rather easy to get stuck, debugging an invalid

parameter that was set, or to use the wrong API function, whereas with Pytorch there are fewer

parameters in the function calls and the function names are more intuitive to understand.

 Debugging: To add to the above comment, Pytorch still appears easier to debug in Jupyter

Notebook (or Pycharm, VS Code, etc.) than Tensorflow 1.x since one can process one statement

(instruction) at a time and observe how the variables advance. However, with TF 2.0’s eager

execution, debugging it in Jupyter Notebook is now easier and more intuitive.

16
Copyright © 2020, Tech Mahindra. All rights reserved.

Conclusion

The overall summary of the above study concludes that, though PyTorch had been leading the race in

comparison with TF V 1.0 in terms of Model Build, Session and Variable Scoping, Symbolic and

Derivative links, Debugging, Data Pipeline, Distributed Computing, TF 2.0 (Alpha Version) is clearly

ahead with Keras incorporation. TF 2.0 is more flexible and user friendly reducing the complexity and

consumption of time and efforts. The outcome of the study recommends Tensor Flow framework for Deep

learning.

17
Copyright © 2020, Tech Mahindra. All rights reserved.

References

https://software.intel.com/en-us/articles/hands-on-ai-part-5-select-a-deep-learning-framework

https://software.intel.com/en-us/articles/hands-on-ai-part-5-select-a-deep-learning-framework

18
Copyright © 2020, Tech Mahindra. All rights reserved.

Disclaimer

Tech Mahindra Limited, herein referred to as TechM provide a wide array of presentations and reports, with

the contributions of various professionals. These presentations and reports are for information purposes

and private circulation only and do not constitute an offer to buy or sell any services mentioned therein.

They do not purport to be a complete description of the market conditions or developments referred to in

the material. While utmost care has been taken in preparing the above, we claim no responsibility for their

accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers

are requested to use the information contained herein at their own risk. These presentations and reports

should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or

manner, in part or as a whole, without the express consent in writing of TechM or its subsidiaries. Any

unauthorized use, disclosure or public dissemination of information contained herein is prohibited.

Individual situations and local practices and standards may vary, so viewers and others utilizing information

contained within a presentation are free to adopt differing standards and approaches as they see fit. You

may not repackage or sell the presentation. Products and names mentioned in materials or presentations

are the property of their respective owners and the mention of them does not constitute an endorsement

by TechM. Information contained in a presentation hosted or promoted by TechM is provided “as is” without

warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a

particular purpose. TechM assumes no liability or responsibility for the contents of a presentation or the

opinions expressed by the presenters. All expressions of opinion are subject to change without notice.

19
Copyright © 2020, Tech Mahindra. All rights reserved.

Thank You
Visit us at techmahindra.com

	Section 1
	1.1 Background

	Background
	1.2 Heading 2

	Section 2
	1.3
	1.4 Heading 2

	Overall observation on the comparison summary – TF1.13, TF2.0, Pytorch
	Section 3
	Overall observation from the experiment – TF1.X to TF2.0 Conversion
	Section 4
	Overall observation from the experiment – TF2.0 – Pytorch Comparison
	Conclusion
	Thank You

