
1

Authored by
Anjali Chhabra Nandwani

Cloud Native
Applications
and the new paradigm
of Quality Engineering
Testing for Recovery

‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

Technology leaders across industries are setting up cloud
native application development teams focusing on delivering
cloud native offerings to meet critical business requirements
stemming from Digital Transformation initiatives. These teams
need to strategize on the crucial aspects of continuous deliv-
ery and quality engineering to ensure high quality deliverables
at high velocity. This thought paper presents the point of view
on Quality Engineering Strategy aligned with Continuous De-
livery for Cloud Native Application Development

Executive Summary

2‘Copyright © 2020 Tech Mahindra. All rights reserved

3‘Copyright © 2020 Tech Mahindra. All rights reserved

To start with let’s level set that why this article on
Quality Engineering for Cloud Native applications

What does Gartner analysts say about
Cloud-Native -

“Technology leaders must deliver
cloud-native offerings now to capture
business opportunities and avoid
irrelevancy”

Craig Lowery
Gartner Principal Analyst

As per a latest publication on
technology predictions by 2022,

50-60% of traditional workloads and
applications being moved to cloud
will be re-written using cloud native
architecture guidelines.

Cloud Native Applications and the new paradigm
of Quality Engineering i.e Testing for Recovery

Quality Engineering
Strategy

High Performing
& Sacure

Distributed & Dynamic
Enviornments, Auto Provisioning

Continues Delivery
& DevOps

Built grounds up to exploit
Cloud computing Technologies
(Auto Scaling, Auto management)

API for collaborations
& Integrations

Loosely Coupled Micro Services
based Architecture

Cloud
Native Application

4‘Copyright © 2020 Tech Mahindra. All rights reserved

I always try and share my perspective, as to what we, in Digital Assurance Services team at Tech Mahindra, believe
is Unique and how we are testing to enable continuous delivery for cloud native applications. This paper will present
my observations learnt from many customer engagements and interactions with industry teams in various forums.

A question raised frequently by Customers and Peers in the Industry

‘What is different when it comes to defining quality engineering
strategy for a cloud native development?
Or is there really any difference?’

Now, to understand a bit more on Testing for Cloud Native
Applications, it is important to first understand what exactly
a Cloud Native app is Native Cloud applications are
the applications that are designed and built grounds
up to exploit the advantages of cloud computation
technologies; where IaaS (Infra as a Service)
capabilities of providers like Azure, AWS, Google cloud
can be utilized to provide auto scaling, auto management
for applications, leading to optimized resource consumption
and reduced operational costs. These applications are
loosely coupled, built mostly using micro services and
twelve factor principles and that run in containerized
fashion on dynamic environments with a combination
of on premise environments, private, public & hybrid cloud
platforms. Another important aspect is that, mostly (almost
always) these applications use Continuous Delivery
model, backed up with Agile and DevOps principles. Also,
some more keywords and phrases that can be used to
define these apps are Scalable, Maintainable, Resilient,
High Performing, Secure and Easy to change for high
speed delivery of new features.

In a nutshell, if I have to create my own definition, then
“Native Cloud Applications are designed and built
grounds up to exploit cloud computing technologies to
deliver high performing, scalable, secure and resilient
applications; capable of adapting to distributed and
hybrid environments, to meet ‘velocity with high quality’
demands of business users in a very demanding Digital
Economy.”

Now, for a much more formal definition, I would suggest to
refer the one from the “Cloud Native Computing Foundation
(CNCF)”. I am not copying it here but there is one from
CNCF available.
Also, one small but important point is that migrating
monolithic on premise applications to IaaS cloud does
not make them cloud native, neither does adding APIs to
monolithic applications make it cloud native; monoliths
are to be refactored, re-architected, and functionally
decomposed (so almost re-developed) to be service
oriented, distributed and scalable on demand, to be
called cloud native.

Why it is important to understand the characteristics
of native cloud applications, is because some of these
characteristics eventually drive those finer details and
some differences in the Quality Engineering principles
and test strategy for these applications.

Let’s start reviewing the characteristics of native cloud
applications, one by one, and see what QE teams need to do
to meet the expectations. Also, I will limit this article more to
the strategy aspects without getting into tools/technologies
for implementing those strategies.

CHARACTERISTICS OF NATIVE CLOUD APPLICATION

5‘Copyright © 2020 Tech Mahindra. All rights reserved

This is an important characteristic that drives the
process for quality engineering, to a great extent.
One common issue from QE perspective (irrespective
of who is responsible for QE – Full Stack Teams,
SDETs, Functional QE group etc.) is the right quality
engineering thought process in the initial phases.
However, this characteristic of Native Cloud
Applications provide the right opportunity to think
through all aspects of quality, by embedding the
right story level acceptance criteria in ‘Definition of
Ready (DoR)’ and Sprint level acceptance criteria in
‘Definition of Done (DoD)’.

Also considering that it is grounds up development,
the teams generally focus on starting with delivering
a ‘Minimum Viable Product (MVP)’ that gives
opportunity for teams to pick up features that can
create the first MVP delivery and plan for lifecycle
quality engineering principles including the functional
and non-functional aspects.

While it is comparatively easy to create functional
acceptance criteria, one key attribute for Native
Cloud Applications is always the Non-Functional
acceptance criteria, which is not easy to capture.

Designed and built grounds up -
backed up with Agile and DevOps Principles

Considering distributed and dynamic environments,
there can be multiple different scenarios of Failures
due to Non-Functional aspects, and as it is considered
nearly impossible to document each and every such
scenario, from service failures to network issues,
latency, data packet loss and so on, QE teams are
supposed to “Test for Recovery”, how recoverable
the application (along with the data and state of
application) is, in case of an unknown and undefined
failure, when it comes to Non-Functional scenarios –. We
will touch upon this more while covering the Resilience
characteristic, as this is an important QE principle to define
the Non-Functional acceptance criteria and our “Test for
Recovery” strategy.

Just to summarize this point though – it is important to have
enough details in DoR and DoD for acceptance criteria on
both functional and non-functional aspects and focus on
delivering MVP sooner than later, with the capability to build
on MVP with more and more features.

Another critical aspect to consider is the Delivery Model
shift for Cloud Native developments; while it does not
contribute directly to the technical aspects of Cloud Native
applications it still impacts the Quality Engineering strategy.

So the shift from traditional ticket driven to more
API and event driven delivery model along with more
decentralization and self-service driven delivery
models need to be considered while defining the
QE strategy.

One more aspect around Continuous Delivery and
CI/CD pipelines – while this can be another detailed
subject in itself; however to ensure robust Cloud Native
app delivery with high-quality, CI/CD pipeline / platform
is to be treated as any other software and has to be
maintained with the same level of discipline and same
rigor of quality engineering principles are to be applied
here.

‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

Micro services based architecture helps break monoliths and
increases agility of development. Ideally, the goal of Microservices
architecture is to ensure that each service is just one feature and
thus, Unit Testing becomes an important aspect in this case. Again,
though the ideal world is one feature-one service, the reality is not
always that, so a set of features can still become a micro service and
in that case, component testing needs to be in the strategy.

Contract Testing strategy
Contract Tests are an important part of Micro services testing
strategy which ensure that services honor their API contracts and
these contracts do not break with changes/ enhancements. In
complex scenarios, most of the times, one user request generally
traverses through a set of micro services to respond back to the
user, that means, integration testing of service interfaces/req-res
becomes a critical aspect of the testing strategy.

Loosely Coupled Applications and Microservices Based Architecture

Observability is one other key aspect of Native Cloud
Applications and should be considered by the Quality
Strategist of a Native Cloud Application as an area to
focus on while testing the app to find out: how observable
the app is, how searchable and meaningful the logs are
and, can all events be traced properly if the system is
event driven.

Also, many modern cloud native architectures are
adopting Service Mesh for microservices runtime
infrastructure for ease of service discovery,
observability, security and load balancing
capabilities. So, the service mesh adds to another
consideration while defining the quality engineering
strategy.

Also, in real time scenarios, having an ability to trace the user
request to the service navigation then back to the user with
the response, becomes critical for a quick resolution of issues.
There are multiple open-source tools that provide specific
ability to break a single request into service-to-service tracing
type of view for better “Observability”.

6

‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

This is a complex subject in itself; however,
from a QA strategy perspective it is important to understand
certain aspects of the application - is it deployed across
cloud providers or a hybrid environment? How a business
critical feature needs to be recovered, if a part of distributed
environment fails?

For e.g. if app server and databases for the Software in question
are across two providers, what happens if the database provider
faces an outage? Will the app server be automatically routed to
some cached data? What will be the impact on user experience
if that happens? This is just one scenario; however, QA
strategists, along with other relevant stakeholders, need to think
of many such scenarios and device test strategy and recovery
strategy for such scenarios.

Scalability has always been a consideration of a good system architect.
It is one of the critical characteristics, and not just a requirement of Native Cloud
Applications from QA strategy perspective; so validation of scalability is important.

How do services scale?
Let’s understand that Scalability of a Micro Services based application is a
bit different as compared to traditional monolithic architectures.

If a monolith app running on a single server has scalability challenges–it is easy
to add more resources for the application to resolve the problem. However, if an
application with micro services architecture in a distributed environment runs into
scalability issues, it is not as simple to allocate more resources.

The challenge is to identify the aspects of resource allocation– where to
allocate more resources? And for which component? That is why, testing
upfront for performance and scaling and benchmarking performance of all
services and components is a very important aspect

so that if something hits production, we
know (through monitoring) by comparing
benchmarks, which component needs
upscaling. Most of the times, required
components are set-up for auto scaling.

Also, while testing for performance, i.e.,
for Load, Stress and Soak, each area is be
considered and tested for. And obviously,
recovery mechanisms need to be defined
and implemented upfront.

I cannot emphasize enough on the
importance of Unit and Component
level load and stress tests for micro
services which have to be a part of
DoD.

Distributed and Dynamic Environments

High Performing and Scalable

7‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

Again, the idea of cloud native development, is also to
consider a design and development strategy that decouples
them from servers and operating system dependencies,
so by the design, cloud native apps are a collection of light
weight and containerized services. For integrations and
collaboration, cloud native architectures depend on APIs, and
also the expectation from these apps, is to align with the elastic
infrastructure, that can be scaled up or down dynamically, based
on the load situation.

A recent Gartner publication
claims that by 2022, API abuses
will be the most frequent attack,
resulting in data breaches.

Hence security testing strategy, in my view,
is one of most important consideration for
the cloud native application testing strategist.

Security Testing is a topic that can have a
detailed article on its own, however, in this
section, let us focus on what is the core difference
between security testing strategies for a regular
application versus native cloud applications. By
design, the native cloud applications are service based
architectures and also the idea is to have micro services
that can be consumed using APIs, while each micro service
will have at least one API. It is not necessary that it has only
one API to consume the service; however, there can be different
approaches by which the consuming applications can consume a
micro service.

The point is that for a traditional monolithic application,
it is easy to determine and authenticate its consumer, but

So, the point here is that, by design itself, cloud native
applications are meant to be highly resilient, however, all
these aspects need to be covered as part of the test strategy,
for ensuring that the design principles are successfully
implemented.

Chaos Engineering is one of the strategies that is to be closely
looked at and incorporated for ensuring the resiliency aspects,
for example, bringing down one containerized micro service
randomly and analyzing the impact on overall user experience and
then subsequent recovery.

Resilient

Secure

that is not the case for native cloud
applications, so the traditional
security strategy that works well
for monolithic applications, like
securing the end points as well as
agent based security techniques,
potential vulnerability alerts etc.

are to be relooked at.

The end-to-end security monitoring
concept gets highly diluted as we

move towards micro services, as the
environments can be dynamic and alert

volumes can quickly grow to become
unmanageable.

As the delivery of cloud native applications needs
to be continuous, light weight and automated along

with CI/CD pipeline.

Also, it has to incorporate some principles of chaos
based testing to manage distributed and dynamic
environment aspects.

8‘Copyright © 2020 Tech Mahindra. All rights reserved

‘Copyright © 2020 Tech Mahindra. All rights reserved

Quality engineering for intrusion
detection systems itself is a key
aspect. Traditional detection of
security threats can be a very manually
exhaustive process, including analysis
of huge volume of security alerts,
leading to huge efforts and delays in
response to a real threat. Continuous
Delivery needs faster detection and
response.

Quality engineering for intrusion detection
systems itself is a key aspect. Traditional
detection of security threats can be a very
manually exhaustive process, including
analysis of huge volume of security
alerts, leading to huge efforts and delays
in response to a real threat. Continuous
Delivery needs faster detection and
response. Also, a poorly configured
detection rule can create false alerts,
leading to confusion and more effort with
low results. For cloud native app economy,
the detection has to be modern and
engineered with automated classification
of alerts and auto response mechanisms.
Distributed environment means the

detection workflows may cut across containers,
VMs, hybrid cloud environments, so it is important
to test even the detection workflows for reliability
and quality. Automated detection categorization
and review/response also means that a lot of action
can happen without human reviews, so the quality
engineering aspect for the detection system itself, is
to be reviewed and enhanced.

How challenging it can be, for an end user, if it is forced
to change the password at every second login, due to
a poorly tested detection workflow that is invoking a
(false) threat rule, which in turn is routing the program to
change password routine, which is created to overcome
the threat!

So, with the very interesting characteristic of security, I
think I will close this article. There is a lot that we can
discuss on test strategy for Cloud Native Applications but
I have tried to cover all the key aspects that we, as Tech
Mahindra’s Digital Assurance practice, cover.

The interesting aspect is when it comes
to implementation of these strategies; we
have our IP LitmusT (AI powered intelligent
automation platform) that has accelerators
to cover all of these aspects, from
implementation and execution perspective.
Do reach out to learn more on how LitmusT
can accelerate your journey to rapid Cloud
Native Application development.

9‘Copyright © 2020 Tech Mahindra. All rights reserved

10‘Copyright © 2020 Tech Mahindra. All rights reserved

Anjali is a technology leader with 20 years of testing & QA
leadership experience in Information Technology Services industry,
with specialization in optimizing Software Development Lifecycle (
SDLC) and Quality Assurance Services.
She has worked with large enterprise customers ranging from
Banking and Financial Services, Telecommunication, Technology
to various verticals. She has proven track record on DevQAOps
Transformation initiatives, Consulting for DevOps and Agile
Transformation initiatives, Automated Delivery Pipeline (CI/CD/CT)
framework design and set-up for large enterprises, QA Community
of Practice (COP) set-up, DevQAOps Program Management and
Governance. In her role, she has worked with diverse IT teams
globally to optimize SDLC with usage of Predictive Analytics,
Machine Learning and RPA. She comes with in-depth understanding
of Integrated SDLC Automation experience along with framework
design / tool selection and ROI analysis.

Anjali Chhabra Nandwani
VP & Head Digital Assurance Services
Tech Mahindra Americas

LinkedIn

https://www.linkedin.com/in/anjali-chhabra-nandwani-46b69010/
https://www.linkedin.com/in/anjali-chhabra-nandwani-46b69010/

11‘Copyright © 2020 Tech Mahindra. All rights reserved

Tech Mahindra, herein referred to as TechM provide
a wide array of presentations and reports, with
the contributions of various professionals. These
presentations and reports are for informational
purposes and private circulation only and do not
constitute an offer to buy or sell any securities
mentioned therein. They do not purport to be a
complete description of the markets conditions or
developments referred to in the material. While utmost
care has been taken in preparing the above, we claim
no responsibility for their accuracy. We shall not be
liable for any direct or indirect losses arising from the
use thereof and the viewers are requested to use the
information contained herein at their own risk. These
presentations and reports should not be reproduced,
re-circulated, published in any media, website or
otherwise, in any form or manner, in part or as a whole,
without the express consent in writing of TechM or
its subsidiaries. Any unauthorized use, disclosure or
public dissemination of information contained herein
is prohibited. Unless specifically noted, TechM is not
responsible for the content of these presentations and/
or the opinions of the presenters. Individual situations
and local practices and standards may vary, so viewers
and others utilizing information contained within a
presentation are free to adopt differing standards and
approaches as they see fit. You may not repackage or
sell the presentation. Products and names mentioned
in materials or presentations are the property of their
respective owners and the mention of them does not
constitute an endorsement by TechM. Information
contained in a presentation hosted or promoted by
TechM is provided “as is” without warranty of any kind,
either expressed or implied, including any warranty
of merchantability or fitness for a particular purpose.
TechM assumes no liability or responsibility for the
contents of a presentation or the opinions expressed
by the presenters. All expressions of opinion are
subject to change without notice.

www.techmahindra.com

connect@techmahindra.com

www.youtube.com/user/techmahindra09

www.facebook.com/TechMahindra

www.twitter.com/Tech_Mahindra

www.linkedin.com/company/tech-mahindra

