
Observability Best
Practices for Cloud
Native Architectures

ADMS.NXT.NOW

Whitepaper

02

KeyTakeaways

• Observability best practices for distributed, microservices based cloud native architectures

• Important aspects of data collection, aggregation visualizations and traceability aspects

for observability solutions

• Utilization of machine learning and artificial intelligence for observability

• Observability as code and observability-as-a-service

• Tech Mahindra’s NAD platform to enable best-in-class observability strategy

and solution

Observability is a popular subject specifically in the context of cloud native architectures

driven by the principles of microservices, distributed architectures, and just-in-time

environment provisioning. All these elements add to the need of having extremely robust

and efficient observability solutions to enable high reliability of IT systems.

In this paper, we will go over some of the important observability best practices that are

recommended while implementing the observability strategy and solution for modern cloud

native architectures.

We will briefly touch upon Tech Mahindra’s NewAgeDelivery (NAD) platform that

incorporates these best practices for observability and enabling the IT engineering teams

to implement the best-in-class strategy and tooling with ease.

04
DevOps Adoption Observability-as-a-Service

10
Phases of Engagement – Setting up

Observability-as-a-Service Platform

09

Abstract

03

Introduction

Businesses are changing at a rapid speed today – agility to respond to the changing

business demands and helping businesses remain ahead in the curve as compared to the

competition, is the key to IT modernization. IT teams across industries are adopting cloud

native engineering, powered by microservices, containers, digital integrations and so on,

to deliver at the right quality with right velocity.

The modern cloud native IT systems provide unparalleled benefits by leveraging just-in-

time infra provisioning and highly scalable architectures that can use decoupled

microservices to enable changes at rapid speed, without creating any system instability.

However, these architectures come at a cost of being distributed and complex too. When

it comes to traditional monitoring for a monolith system, it is much simpler with

contained infra, networks, and apps to be monitored. The challenge in cloud native and

microservices architectures is speed, scale and amount of data that is collected by the

monitoring systems, network, and services traces, and logs.

Before we deep dive on this subject of monitoring and observability – it is important to

establish the similarities and difference between the two. There can be different ways of

understanding this and each SME in this area will have their own way of articulating it as

well. In my opinion, monitoring is the act of collecting data through logs, traces and
taking certain actions as needed for the aspects that are known, to prevent issues, while
observability is to use that data for a deeper analysis to discover the unknown, to

analyze why something is happening in distributed IT system, what can be the impact and

what should be the steps taken. Monitoring is the subset of the overall observability

solution – a system that is not monitored well is not observable!

Observability is also defined as the ability of the engineering team to be able to infer or
answer any IT system behavior and any question around the state of application services,

infra, networks by looking at the data from logs, traces and any other form of monitoring

and telemetry data.

Highly observable systems provide the insights for the DevOps and SRE teams to be
able to take actions (preventive or reactive) quickly by analyzing all the data – some

evident and obvious data and some buried data from complex microservices traces.

In this paper, we will discuss some basic principles of designing the highly observable IT

systems. One disclaimer is that it is not necessarily a comprehensive list of all the best

practices and principles – but a list to cover all the experiences that I have had through

various engagements and discussions with various IT teams.

04

Before embarking on the journey to set-up best in class observability framework and

platform few things that are to be kept in mind:

Metrics and Baseline

• What metrics we are trying to improve? For example: mean time to resolution,

automation index and auto remediations, first time resolution, incident reduction,

and so on.

• Establish the current baseline for the metrics that we are trying to improve

• Agree on the success / failure criteria

• Agree on the measurement frequency for the identified metrics post

implementation of the observability platform

No Data is Useless

One key best practice is that “Data is King” –

no data across the SDLC pipeline is

useless data unless we collect, analyze,

and then decide to discard it. The ability to

capture data as the transactions and

workflows move across various system layers

is one of the first design principle for highly

observable systems.

One important point to remember is that while

observing the highly distributed microservices

based cloud native systems – we will be hit

with issues that are categorized as “unknown

unknowns” – and the ability to find the trace of

the issue origination in the complex maze of

services’ interdependencies, distributed infra

and error propagation across cross service

interactions is the key to good observability

solution. It is important that no data is left

untraced and untracked from the observability

platform’s ability standpoint. At some point, we

can decide to filter out certain data sets and

mark as not required to be collected to ensure

that we are not just capturing elements that are

of no value.

So, it is ok to collect all the data and then

sample or filter – instead of starting with a

sampled / filtered view that does not have the

details that we need.

DevOps Adoption

For an observability framework and platform to support microservices driven

multi-cloud and distributed systems, and be successful, it is important that the IT teams

adopt DevOps practices.

Why it is important is that true impact of observability comes with ability to trace the events /
incidents through the lifecycle to the origination. That is possible when there is true

collaboration between all IT teams not just in terms of people but also tools / frameworks

used. Tools across the Dev and Ops landscape need to talk to each other or at least allow data

traceability for right level to root cause analysis in case of any event.

It is also important that there is quickest possible response to any event that the observability

platform identifies. For this to happen teams need to collaborate, avoid finger pointing and truly

work as one team utilizing integrated processes and tools, believe in the process of continuous

monitoring and feedback loops. All these are basic principles of DevOps. Hence, it is important
to align with the DevOps culture for the best ROI and favorable outcomes from the investment
on observability framework and platform.

05

Data is Important but
Traceability is more Important

While we discussed the importance of data having the right traceability, it is equally

important to get meaningful insights. Good observability solution enables data tracing in a

way that anyone looking at the data-trail should be able to point where the issue originated

– for e, g., a performance degradation in the service response time could have been a result

of front-end UI issue. So, it is important that log and trace data can provide anyone the

ability (irrespective of their role as SRE, operations, Dev, or QA) to identify the root cause.

This is one of the core principles of good observability – data tracing and correlation allow
teams to move away from operational silos, where anyone debugging an issue irrespective

of their role, identifies the same root cause. The observability solution should be able to

collate all data and create meaningful correlations.

Data Aggregation and Centralization

While we talked about traceability and correlation one of the key aspects for that to be
successful is our ability to get all the important data from all the important tools and
sources into a central data lake. Unless there is a centralized data repository, it is not

possible to do real trend analysis, anomaly detections, and so on.

Data Visualization

A good observability solution provides the ability for users to be able to clearly

visualize the data – starting with the issue and navigating to the root cause of the

issue with minimal clicks / screen navigations. Choosing the right metrics to display

and identify the most intuitive dashboards is what is expected out of a good

observability solution.

It is also important to have multiple personas built into the dashboards based on

the pattern-analysis of the historical usage, the user-roles and the incident types.

Let’s again look at a monolith stable application in an abundantly provisioned

infrastructure – maybe looking at log data at half-a-minute interval is good enough.

Now consider a modern cloud native microservices based IT system where servers and
containers are created or destroyed every minute due to auto scaling set-up or where
1000s of serverless functions run for less than 15 seconds; the granularity of data
collection must be very different – mostly every second.

Again, when setting up the initial observability framework it is much better to choose

higher level granularity and then change to lower as needed at later point.

Frequency of Data Collection

06

Utilization of Machine Learning
and Artificial Intelligence

The amount of data from trace and

logs that come along with highly

distributed microservices based cloud

native systems can be overwhelming to

be analyzed manually for making

predictions, trend analysis, looking for

auto remediations or identifying

anomalies to take some preventive

steps. That is why machine learning

and AI models are used as part of the

observability solutions for risk

predictions or making decisions on

auto actions or remediations through

bots / human interventions.

Another important point to note is

that while observability is key to a

reliable IT system, many a times, just

having very basic checks on certain

thresholds provided by auto-alert

mechanisms can create lots of

unnecessary and frequent noise. It is

important to have the right algorithms

that can reduce the noise from all the

trace and log data and provide

meaningful and actionable insights.

That is what a good model with the

right training from historical data and

statistical analysis can do.

Shift Left and Shift Right

Gone are the days when monitoring and observability was part of the operations
function – observability solution is not good if it is not giving the observations from
development to deployment in production. A good observability solution must be able

to correlate what is happening in the application that leads to certain behavior in the

production. That is where role of quality engineering and performance engineering

teams becomes crucial in the observability solution design.

Embedding the right functional and non-functional testing processes earlier in the

development pipeline (shift-left) and extending the pre-production stage monitoring and

some elements of testing (A/B, canary releases) into production (shift-right) are also

important guiding principles when designing a robust observability solution.

07

Observability and Security

For any cloud-native highly distributed (or even otherwise) IT system, security is a

very crucial aspect. Having the right threat monitoring and alerting mechanisms,
ability to guide for prevention of security issues and quick remediation suggestions
or auto actions in case of a security issue, are some of the core expectations from a

good observability solution.

Good observability solution helps in reducing the overall security operations cost.

Another critical aspect of security is also around regulatory and compliance

requirements for sensitive data. Robust observability solution would provide enough
traces, logs and metrics to ensure any incidents that might lead to a breach of
regulatory and compliance requirements, it can be arrested proactively and prevented.

Quick access to all event data for analysis

Faster turnaround to isolate threats and critical events

Faster remediation turnaround in case of an incident

Better ability to do thorough root cause analysis (RCA) for preventive measures

Observability-as-Code

There is a movement around everything as code – observability is no exception.
Observability-as-Code means to configure and launch the alerts, dashboards, and

graphs programmatically, using code and APIs.

Having the ability to dynamically create the visualizations from the logs, traces, and
events alert data helps in real time views, eliminating wait-time for the periodic report

generations. Observability-as-Code also means programmatically executing

scripts of some auto remediations, auto healing scripts based on certain

observations / alerts or events.

Observability-as-Code is one of the important best practices to keep in mind while

designing the observability solution.

08

Alerting Best Practices

Knowledge Management and SOPs

Eventual goal of a robust observability solution is to improve the system reliability,

availability, and mean time to recovery or restore (MTTR). While designing an observability

solution, one area that at times is missed out or overlooked, is how to ensure the right level

of knowledge and remediating steps every time an incident is observed and resolved.

Creating SOPs and runbooks to be able to quickly identify the experts and resolve the
issues or prevent a critical incident is also core to a good observability solution. Making

remediations and issue prevention as process-dependent, instead of people-dependent,

helps big time.

Utilizing a structured repository for maintaining the assets, templates, SOPs,

and runbooks is a recommended approach to incorporate as part of the

observability framework.

We can configure many alerts based on the described thresholds, to alert the teams

proactively in case of an event or even proactively alerting or in case of possibility that

an event might occur.

There are certain best practices to be followed before setting up these alerts:

All these aspects need to be analyzed well before deciding on altering strategy

and tools.

Identify the best mode of alerting depending upon the nature and criticality of the

event observed

Proactive vs. reactive alerting – again decision to be based on type of event

Threshold setting – are they too conservative? Are we triggering unnecessary

alert or are we missing on alerting proactively?

Scalability

Cloud native environments can be complex and as mentioned earlier, the volume of

logs, traces and metrics generated through the hundreds of containers, host

environments, data bases and network logs, can be overwhelming and humongous.

The observability solution needs to be able to scale to terabytes (or beyond) of data
and millions of traces.

These are some of the important aspects to consider and plan for, while designing an

observability framework and solution.

What kind of data

stores to be used?

How much history needs

to be maintained?

Archival

strategy

09

Observability-as-a-Service

Tech Mahindra’s ADMS.NXT.NOW
approach for platform engineering
and delivery is built to support cloud
native architectures by providing
end-to-end integrated and
automated platform for DevSecOps,
IT value stream management,
monitoring, and observability,
SRE, knowledge, learning and
asset management.

As the IT teams working in complex

cloud-native distributed and highly

scalable environments start working

on observability, many a times, the

teams end up adopting multiple tools,

dashboard solutions, alerting

solutions and auto remediation / self-

healing approaches that quickly

become complicated and

overwhelming to manage. That is

why it is important to create a

centralized framework supported by

right set of tools, dashboards, central

code repositories that can be utilized

by all the teams to have a unified

approach to observability.

The framework and platform need to
support integration of logs, traces,
events from multiple monitoring,
logging and service traceability tools
and provide actionable insights,
intelligence, root cause analysis,
preventive steps, auto remediation
triggers, bot invocations, SOP /
reusable asset creation as needed.

This is where Tech Mahindra’s

NewAgeDelivery (NAD) platform comes in
as highly usable platform for providing a
centralized observability framework and a
platform for cloud-native engineering
teams. The platform supports over 300
tool integrations (e.g., planning, build,
deployment, release, infra, network,
security, monitoring, logging, service
traceability with readily usable plug-ins).

The solution comes with 90+ pre-
configured critical dashboards with
possibility of configuring event-based
alerts. Creation of additional custom
dashboards is also feasible.

NAD platform also integrates with over

600 pre-built bots and Tech Mahindra’s

event driven observability solution for

various auto remediation actions. Also

comes with an engineering workbench to

orchestrate as many auto remediation

workflows as needed based on the

event or threshold triggers from

monitoring tools.

Generally, the large and complex

enterprises have cloud infrastructure that

is multi-cloud based and that’s another
reason to utilize NAD that supports AWS,
Azure, GCP and can cut across on-
premises and multi-cloud environments.
It can integrate with the native monitoring
and cloud watch solutions and tools from
all three hyper-scalers (AWS, Azure, GCP),
and beyond.

10

Phases of Engagement – Setting up
Observability-as-a-Service Platform

Assessment

This is the most important step in the process when we start getting

engaged for observability as a service solution. Assessment of the

existing technology, applications, infra and networks landscape including

the current set of monitoring and telemetry tools and processes is carried

out using the NAD design and POD’s assessment tool.

We also utilize tools in conjunction with the assessment questionnaire
kit. Tools like Tech Mahindra LCaaS and CAST helps us in creating code
and architecture level traceability, dependencies to understand the end-
to-end IT landscape including the distributed architecture better to
create a holistic observability strategy and solution.

2-3
WEEKS

Framework and Platform Implementation

After the assessment is done with the thorough understanding of IT

landscape and is documented including tools, technology, processes, and

gaps identified; the next step is to define the framework strategy, detailed

observability platform architecture that utilizes best tools, solutions from

customer’s landscape and integrating them with the NAD platform, to

create the best-in- class observability-as-a-service platform that can be

leveraged and proliferated across the IT and engineering teams.

The idea is to maximize the ROI on the investments already made by the
customer and utilize the existing capabilities to the fullest, in conjunction
with the capabilities provided by Tech Mahindra NAD platform.

Identifying the right dashboards from the pre-existing 90+ dashboards,

ensuring right set of graphs and dashboards are populated and access set-

up for the same is also a key activity of this phase.

The process typically takes anywhere between 2-3 months to design and
implement the fully functional and highly scalable observability platform
that can cover varied and distributed technology landscape.

We also provide support based on the needs of the organization and its

change management to ensure seamless adoption.

8-12
WEEKS

Run and Continuous Improvement

11

After the foundation framework, processes and observability processes

are set-up – in the ongoing run and continuous improvement phase, the

Tech Mahindra team of experts focus on the following, based on the

client priorities:

• Increase proliferation and support in wider adoption, by driving

various organizational changes and management strategies.

• Continuously monitor usage of data and filter unnecessary data

to remove noise

• Identify any missing data captures and improve the data

capture strategies

• Identify need for custom dashboards based on feedbacks

• Design, develop, and deploy custom dashboards

• Proactively work on identifying more machine learning and predictive

analytics use-cases based on the data

• Real-time data analysis, trend, and anomalies detection

• Enrich the auto-action and auto-remediation bots, create more

as needed

ONGOING

The aim of this phase is to maximize the ROI on the capital invested on monitoring tools

and observability platform; and ensure that IT teams are exceeding on availability and

reliability objectives.

Conclusion

It is evident that observability is a critical solution that requires good strategy, planning

and implementation efforts. Also, there are several best practices to be utilized while

implementing a robust observability solution.

Once implemented right, the observability solution can add tremendous value and
improve the reliability and resilience of complex IT landscapes drastically.

Typical benefits of utilizing a robust observability framework and platform as a service

are as following:

Capex Saving ~30-40% Opex Saving ~50-60%

~45-60% ~45-50%MTTR Improved by MTTF Improved by

12

Copyright © Tech Mahindra 2022. All Rights Reserved.
Disclaimer. Brand names, logos and trademarks used herein remain the property of their respective owners.

Author

Anjali Chhabra Nandwani
Global Head - GTM & Pre-Sales, ADMSNXT
& Digital Assurance Services

Anjali is a technology leader with over 20 years of IT engineering in technology

services industry, with specialization in optimizing software development lifecycle

(SDLC), ADMS, DevOps, and quality engineering services. She has worked with large

enterprise customers ranging from banking and financial services, telecommunication

insurance, RCG, technology, and various other industry verticals. She has a proven

track record on DevSecOps transformation initiatives, consulting for DevOps and agile

transformation initiatives, automated delivery pipeline (CI/CD/CT) framework design

and set-up for large enterprises, community of practice (COP) set-up, DevSecOps

program management and governance. In her role, she has worked with diverse IT

teams globally to optimize SDLC with usage of predictive analytics, machine learning,

and RPA. She comes with in-depth understanding of integrated SDLC automation

experience along with framework design / tool selection and ROI analysis.

