
Enterprise application
modernization with
Azure Kubernetes
Service on Microsoft

WHITEPAPER

2

Abstract

Most enterprises have significant investments in their existing application portfolio, from both a financial
and operational standpoint. While the term “legacy” sometimes has a negative connotation in the enterprise
software library, these legacy systems are often most mission-critical applications from business
perspective.

A related modernization trend is the IT industry embracing containers and orchestration as a means for
packaging, deploying, and managing applications and workloads on cloud. While we can containerize a
legacy app, containers are viewed as an optimal fit for a more decoupled approach to development and
operations—namely, microservices based architecture.

Introduction

Today’s businesses are faced with a singular reality:
innovation is the requirement for mere survival. Yet
many enterprises are crippled by legacy and
technical debt. This paper is written for the leaders
tasked with bridging the gap. Cloud’s approach to
modernizing infrastructure, process, and
architecture (IPA) equips senior IT decision-makers
with a realistic, achievable path to application
modernization. In this paper, you’ll learn how to
tackle seemingly insurmountable challenges one
step at a time and see real-world examples from
enterprises that have already succeeded.

The goal of traditional application modernization is to optimize both the velocity and the efficiency of an
application’s release cycle. By introducing new technologies and embracing new processes, businesses can
deliver value more quickly. Innovation velocity is the speed at which a team can introduce something new
and of value to its customer at a reasonable cost and is often tied to technology strategies and choices.
Process efficiency is the ability for a team to improve how it brings innovation to market with the least
amount of friction and is often related to process methodologies such as information technology
infrastructure library (ITIL), Waterfall, DevOps, or Agile. The client is one of the global leaders in the logistics
industry. With more than 300,000 people in over 200 countries, it has delivered more than a billion parcels
worldwide. This organization needed to transform some of their legacy enterprise application into
microservice based application and deploy those applications to cloud.

Industry Landscape

Application modernization is a strategic decision factoring in organizational needs, priorities, and budgets.
The considerations include modernizing the application experience, method of accessing, and creating new
workflows around the application through integration and automation.

Traditional applications limit an enterprise’s ability to move quickly in two ways. First, the monolithic
architecture of a traditional application is inherently inflexible, creating exponential inefficiencies
when building and running applications. Second, traditional applications constrain development for
new, cloud-native applications that depend on them. Application components in monolithic
architecture are tightly coupled; changes to any individual component requires changes to other
components.

2

3

Key Takeaways

App modernization on Azure

Containerization with microservices based
architecture on Azure Kubernetes Service

Release lifecycle management with Azure
native CI/CD platform i.e., Azure DevOps

Infrastructure automation with
Infra-as-a-Code tool Terraform

Security

Holistic approach

Integration with 3rd party analytics tools

The Key Focus Areas Include

Application modernization strategies or plan

Planning on Application migration to cloud

Breaking monolithic applications to
microservice based applications

Assist in containerizing these microservice
based applications

Delivering apps and features faster with
containers and container orchestration

Implement DevOps lifecycle

Provide a stable environment and seamless
operations support

Enhance security

Enable intelligent security analytics and threat
intelligence

Reducing the overall Total cost of ownership

Benefits

These services help the businesses to:

Reduced total cost of ownership (TCO)

Better agility, scalability and portability

Improved security with Azure’s distributed
denial-of-services and threat protection

Better performance from highly available
application. Less downtime

Faster time to market from weeks to days

Reduction in IT admin cost due to the self-
service module implementation to provision
the resources

Improved productivity due to less operational
activities and more focus on the app
deployments rather than managing the cluster

4

Our Solution
The services which are offered in the solution are-

• Establish right cloud strategy as per the business needs

• Evaluate impact of issues related to security, governance, risk & compliance

• Define a cloud-based application modernization strategy

• Implement the project

• Provide managed operation services:

• 24/7 operation & monitoring of the platform by our support engineers

• Providing L1, L2 and L3 supports

• Escalation to Microsoft support team

• Managed blue/green deployment process

• Updating and maintaining the workload templates

Simplified Modern Architecture

This app modernization solution has been designed and built considering Microsoft best practices
guidelines and with Microsoft Azure Well-Architected framework standards. This solution includes
autoscaling functionality applied both on cluster and pod level. These applications are hosted in AKS cluster
in Azure East US region that spread across 3 availability zones to provide high availability.

System Design

5

Components Of The Architecture

Azure Kubernetes Service (AKS): It is a managed
Kubernetes service with enterprise-grade security
and governance and offers platform to deploy and
manage containerized applications. It is based on
the open-source Kubernetes (k8s), a container
orchestrator tool, which is designed to build,
deliver, and scale containerized applications. The
Kubernetes API server is managed by Azure.

Azure Private Link: It provides a private endpoint
in a Virtual Network for connectivity to Azure PaaS
services like Azure Storage and SQL Database, or
to customer or partner services.

Azure Pipelines: It is a service that provides
Continuous Integration and Continuous Delivery
jobs, to build and release your application
automatically.

Azure Container Registry: It hosts your docker
container images. This service includes container
image scanning with the integration with
Microsoft Defender for cloud.

Azure PostgreSQL: It is a fully managed PaaS
database engine that handles most database
management functions like upgrading, patching,
backups, and monitoring, without user
involvement.

Azure Policy: It lets you create, assign, and
manage policies. These policies enforce different
rules and effects over your resources, so those
resources stay compliant with your corporate
standards and service level agreements. It
integrates with Azure Kubernetes Service too.

Azure Monitor: It lets you get insights on the
availability and performance of your application
and infrastructure. It also gives you access to
signals to monitor your solution's health and spot
abnormal activity early. It can collect log data
from VM operating systems as well as crash
dump files and aggregate them for viewing in
Microsoft Defender for cloud.

Microsoft Defender: It is for Endpoint protects
organizations from threats across devices,
identities, apps, email, data, and cloud workloads.

Microsoft Sentinel: It is a cloud native security
information and event management (SIEM) and
security orchestration, automation and response
(SOAR) solution. It uses advanced AI and security
analytics to detect, hunt, prevent, and respond to
threats across enterprises.

Log Analytics: It is a monitor service that you can
use to query and inspect monitor log data. Log
analytics also provides features for charting and
statistically analysing query results.

Azure Key Vault: It securely stores and tightly
controls access to secrets like API keys,
passwords, and certificates.

Terraform: It is a third-party tool that provisions
and modifies resources per environment. It also
supports cross-platform infrastructure-as-code
configuration and deployment across Azure and
other cloud providers.

Azure Active Directory (Azure AD): It is an
enterprise identity platform provides single
sign-on and multi-factor authentication to govern
user access to resources.

Azure Resource Group: Resource groups are used
to group Azure resources so they can be managed
by lifetime, owner, or other criteria.

Virtual network (VNET): It provides an isolated and
highly secure application environment by
restricting network access to specific IP addresses
or subnets. By default, AKS creates a virtual
network into which agent nodes are connected.

Helm: It is a package manager for Kubernetes.
Helm is the K8s equivalent of yum or apt.

6

Detailed Approach for Implementing the Architecture

An Azure subscription has been linked to the client's HUB account in Azure Active Directory (AD) Connect.
Within that subscription, Azure Kubernetes Service (AKS) resources and related Azure resources got
provisioned. This helps us to maintain a secure environment.

• A resource group in that Azure subscription has
held those related resources for AKS Azure
solution. This resource group includes all the
resources for the solution for ease of
management and billing purposes.

• AKS clusters have been created with Azure
Container Networking Interface (CNI), so that
every pod gets

• These IP addresses are planned to be unique
across the network landscape. Each node has a
configuration parameter for the maximum number
of pods that it supports. The equivalent number of
IP addresses per node have been then reserved up
front for a particular node.

• The cluster node pool sizing is arrived with the
best practices to serve the below purposes

• The AKS cluster deployment is an automated
process, and we can create/update these
clusters with Terraform scripts.

• The cluster autoscaler has been enabled to let
us run an efficient, cost-effective cluster.

• When using Azure CNI, every pod is assigned a
Virtual Network route-able private IP from the
subnet. So, the gateway can reach the pods
directly.

• Azure Network Security Group (NSG) has been
used for the traffic firewall to the cluster and
between the node pools, additionally all the
microservices and pods are under strict
network isolation utilizing Azure CNI-Calico
security policies.

• Application Gateway has been used at the
overall cluster level and it will be in the
classified segmentation. First Service reached
through application gateway must be in the
external segmentation zone.

• Ingress load balancers and their respective
rules were provisioned during Deployments as
per the requirements, Ingress controller Load
balancer got created as Internal.

• AKS cluster requires certificates which are
stored in Azure key vault.

• Terraform state persistency is managed in
Azure storage Account as terraform backend.

• Azure Container Registry (ACR) with premium
SKU created for this project to store the
images relevant for AKS cluster. ACR got
provisioned through Azure DevOps pipeline
using Terraform modules.

High availability

Autoscaling

Capacity management

Performance of the application
hosted in the cluster.

7

Detailed Approach for Implementing the Architecture

An Azure subscription has been linked to the client's HUB account in Azure Active Directory (AD) Connect.
Within that subscription, Azure Kubernetes Service (AKS) resources and related Azure resources got
provisioned. This helps us to maintain a secure environment.

• A resource group in that Azure subscription has held those related resources for AKS Azure solution. This
resource group includes all the resources for the solution for ease of management and billing purposes.

• AKS clusters have been created with Azure Container Networking Interface (CNI), so that every pod gets
an IP address from the subnet and can be accessed directly.

• Azure AD group membership was used to control
access to namespaces and cluster resources
using Kubernetes role-based access control
(RBAC) in an AKS cluster.

• Role assignments scoped to the entire AKS
cluster was done on access control (IAM) blade
of the cluster resource using Azure CLI
command

• Cluster Role and Cluster role binding got created
for the below said AD groups in cluster level

• Container Storage Interface (CSI) driver got
installed in the AKS cluster through Helm repo
(as part of the cluster creation pipeline). The
purpose of the CSI driver is to access and
retrieve secrets from key vault using the secrets
store Container Storage Interface (CSI) driver to
mount the secrets into Kubernetes pods.

Role 'Azure Kubernetes Service RBAC
Reader' got assigned to 'Monitoring
Team – Read Only'Autoscaling

Role 'Azure Kubernetes Service RBAC
Writer' got assigned to 'Application
Developer'

Role 'Azure Kubernetes Service RBAC
Admin' got assigned to 'Application
Developer (Elevated Access)'

Role 'Azure Kubernetes Service RBAC
Cluster Admin' got assigned to Cluster
Admins'

• Resource lock got applied to the resources to
prevent resource deletion by accident

• Azure Defender is enabled for container
registries at the subscription level

• Enhanced security Kubernetes secrets by
storing them externally in Azure key vault

• Used security hardened VM host image to
reduce attacks

• Enabled Microsoft Sentinel to deliver intelligent
security analytics and threat intelligence
across the enterprise, providing a single
solution for attack detection, threat visibility,
proactive hunting, and threat response

• For monitoring and management of the AKS
cluster below are the use cases considered

• For Splunk integration, we have installed
collector for Kubernetes agent in the AKS
cluster, so that Splunk can retrieve the logs
from cluster.

Log Aggregation

Cluster health monitoring

Security and audit

Application Monitoring

8

NXT.NOWTM Advantage

IP Range Authorization: For public cluster, IP
ranges should be configured, so that API server
will be accessible only from that ranges.

Storing Secrets in Azure Key Vault: Using Key Vault
Secrets for injecting passwords through CSI
driver

Isolating Groups of Resources: Using Kubernetes
namespaces to properly isolate the Kubernetes
resources. We do not use the default namespace /
Namespaces

Implement Pod Identity: Using pod identities to
automatically request access using a central Azure
AD identity solution

Scan the Container Image against Vulnerabilities:
To protect the Azure Resource Manager based
registries in the subscription, we have used
Microsoft Defender for container registries

Allow Deploying Containers Only from Known
Registries: To ensure only allowed container
images in AKS by built-in Azure Policy

Role-Based Access Control to Docker Registries:
To have Azure Container Registry roles and
permissions

A well designed, planned, and tested business continuity and disaster recovery strategy is essential to
protect a business from planned and unplanned outages.

Availability zones are a high availability offering that protects the applications and data from data center
failures. Zones are unique physical locations within an Azure region. Each zone is made up of one or more
data center equipped with independent power, cooling, and networking. To ensure resiliency, there's always
more than one zone in all zone enabled regions. The physical separation of availability zones within a
region protects applications and data from data center failures.

AKS clusters that are deployed using availability zones which can distribute nodes across three zones
within a single region of East US.

If an availability Zone 1 (East US DC1) becomes unavailable, the applications will continue to run across
availability Zone 2 (East US DC2) or availability Zone 3 (East US DC3).

The solution is not protected against an outage of the whole Azure data center location East US.

Network Segmentation of Docker Registries:
Assign virtual network private IP addresses to
registry endpoints and use Azure Private Link

AAD Integration: Sign in to an AKS cluster by
using your Azure AD authentication token

K8S RBAC + AAD Integration: Control access to
cluster resources

Compliance enforcement of Docker Image Builds:
To have Azure Policy built-in definitions for Azure
Kubernetes Service

AKS and ACR integration: Integrate the ACR with
AKS cluster to pull images without credentials

Maintain Kubernetes version up to date: Regularly
update to the latest version of Kubernetes

Enable master node logs: Enabled Diagnostic
settings and streamed the logs to Log Analytics
and Event hub

Designed Enterprise AKS Landing Zone: Followed
the Microsoft guidelines on creating Landing
Zone for AKS

9

Conclusion

Nowadays, everyone wants to transform their monolithic legacy application to a microservice based
application so that their applications can become an agile and scalable product. To respond to the rapid
changes in today’s world, application must be quick to deploy, always available and easy to maintain.

These microservice based application reduce the application downtime since all the microservices are like
individual apps which are loosely coupled to each other. So, maintaining, deploying, scaling, upgrading or even
deleting these microservices are very easy to achieve. In this paper, we learnt about how Microsoft Azure can
help customers to modernize their monolithic on-premises application and provide a highly scalable
platform to deploy those applications. Azure provides better agility and scalability for deploying your
application with its improved security and compliance certifications.

Authors
Mr. Guru Prasad C P,
guruprasad.cp@techmahindra.com
Group Practice Head, Azure Cloud Services

Guru Prasad C P has an experience of over 22
years with over 8 years specifically in the public
cloud working in Asia, ANZ, Europe and the US.
His experience includes, setting up practice
teams aligned to industry verticals and
horizontals, analyst interactions for positioning
the offerings, hiring the right talent, involving in
strategic exercise mergers and acquisitions ,
organization building, creating frameworks & IP’s.

At Tech Mahindra he is responsible for practice
and competency development which includes
alignment with OEMs for solutions, offerings and
adoption of new technologies, customer
interfacing where he acts as a trusted advisor in
providing unbiased views/opinions and aligning
with organization goals at the same time, value
creation, developing practice areas deal making,
solution support for large deals, and carve out
deals from azure and hybrid cloud perspective

Guru has a keen interest and expertise in verticals
including travel, transport, manufacturing,
insurance, educational and government
charitable trusts.

Team

Mr. Arunava Basu,
ab00788419@techmahindra.com
Solution Architect (Application Modernization/ SRE/
DevOps/ Automation)

Arunava Basu is a Solutions Architect at Tech
Mahindra. He is a seasoned professional with 13 years
of experience in architecting cloud native applications,
migrations, and administration. He also has experience
as a cloud DevOps and automation architect to
automate tools infrastructure, CI-CD Platform,
application provisioning, deployment management with
deep understanding and scaling of DevOps process
and tools to build stable products. Arunava has a keen
interest in automating things.

Mr. M Rajashekar Reddy,
MX00797486@TechMahindra.com
Solution Architect (Application Modernization/
Integration/ Analytics)

M Rajashekar Redd is a Multi-Cloud Architect with 15
years of experience, leveraging proven product,
program management, pre-sales and technical
architecture skills. He has an experience in working for
different clients across the industry verticals such as
aerospace, healthcare, insurance, power and energy, oil
and gas and telecom and semiconductors, geo- spatial,
transportation. His expertise includes Azure, AWS,
GCP, OCI, technical program management, delivery
leadership, product management, pre-sales, proposal
management, agile project management. He is skilled
in Python, Java, Apache-Airflow.

mailto:guruprasad.cp@techmahindra.com
mailto:ab00788419@techmahindra.com
mailto:MX00797486@TechMahindra.com

www.youtube.com/user/techmahindra09
www.facebook.com/techmahindra
www.twitter.com/tech_mahindra
www.linkedin.com/company/tech-mahindra
www.techmahindra.com

Copyright © Tech Mahindra 2022. All Rights Reserved.
Disclaimer. Brand names, logos and trademarks used herein remain the property of their respective owners.

